Специальный электроприбор станция катодной защиты. Что такое катодная защита трубопроводов и как она действует

Катодная защита от коррозии – все особенности методики

Одним из часто применяемых методов электрохимической защиты разнообразных конструкций из металлов от ржавления является катодная защита. В большинстве случаев ее используют совместно с нанесением на металлические поверхности специальных покрытий.

1 Общая информация о катодной защите

Впервые такая защита металлов была описана в 1820-х годах Гемфри Дэви. На основании его докладов в 1824 году на корабле HMS Samarang осуществили проверку предоставленной теории. На медную обшивку корабля установили железные анодные протекторы, которые существенно уменьшили скорость ржавления меди. Методику стали развивать, и в наши дни катодная антикоррозионная защита всевозможных конструкций из металлов (трубопроводов, элементов автомобиля и т. д.) признается наиболее эффективной и широко используемой.

В производственных условиях такая защита металлов (ее нередко называют катодной поляризацией) производится по двум основным методикам.

  1. Предохраняемая от разрушения конструкция подключается к внешнему источнику тока. В данном случае металлоизделие выполняет функцию катода. А анодами являются инертные дополнительные электроды. Эта методика обычно применяется для защиты трубопроводов, металлических сварных оснований, платформ для бурения.
  2. Катодная поляризация гальванического типа. При такой схеме металлическая конструкция контактирует с металлом, который имеет больший электроотрицательный потенциал (алюминий, магний, алюминиевые сплавы, цинк). При этом под анодом понимают оба металла (основной и защитный). Растворение (имеется в виду сугубо электрохимический процесс) электроотрицательного материала приводит к протеканию через предохраняемое изделие необходимого катодного тока. С течением времени происходит полное разрушение металла-“защитника”. Гальваническая поляризация эффективна для конструкций, на которых есть изоляционный слой, а также для металлоизделий относительно малых размеров.

Первая методика нашла широкое применение по всему миру. Она достаточно проста и экономически целесообразна, дает возможность предохранять металл от общей коррозии и от многих ее разновидностей – межкристаллитной коррозии “нержавейки”, питтинговой, растрескивания латунных изделий, обусловленного напряжениями, при которых они работают.

Гальваническая схема нашла большее применение в США. В нашей стране она используется реже, хотя ее эффективность высока. Ограниченное применение протекторной защиты металлов в России связано с тем, что на многие трубопроводы у нас не наносят специальное покрытие, а это является обязательным условием для реализации антикоррозионной гальванической методики.

2 Как работает стандартная катодная поляризация металлов?

Катодная защита от коррозии производится посредством использования наложенного тока. Он поступает на конструкцию от выпрямителя либо иного источника (внешнего) тока, где промышленный по частоте переменный ток модифицируется в требуемый постоянный. Объект, который защищается, подключают к выпрямленному току (к “минусовому” полюсу). Конструкция, таким образом, является катодом. Анодное заземление (второй электрод) подключают к “плюсу”.

Важно, чтобы между вторичным электродом и конструкцией имелся хороший электролитический и электронный контакт. Первый обеспечивается грунтом, куда погружают анод и объект защиты. Грунт в данном случае выполняет роль электролитической среды. А электронного контакта добиваются с помощью проводников из металлических материалов.

Регулирование катодной антикоррозионной защиты осуществляется посредством поддержания защитного потенциала между электролитической средой и индикатором потенциала поляризации (либо непосредственно конструкцией) на строго определенной величине. Замеряют показатель вольтметром с высокоомной шкалой.

Здесь необходимо понимать, что у потенциала есть не только поляризационный компонент, но и еще одна составляющая – падение (омическое) напряжения. Такое падение возникает из-за протекания через эффективное сопротивление катодного тока. Причем качество катодной защиты зависит исключительно от поляризации на поверхности изделия, которое предохраняется от ржавления. По этой причине выделяют две характеристики защищенности металлоконструкции – наибольший и наименьший потенциалы поляризации.

Эффективное регулирование поляризации металлов, учитывая все сказанное, становится возможным в том случае, когда показатель омического компонента исключается из величины полученной разности потенциалов. Добиться этого можно при помощи особой схемы замера потенциала поляризации. Описывать ее в рамках данной статьи мы не будем, так как она изобилует множеством специализированных терминов и понятий.

Как правило, катодная технология применяется совместно с нанесением на внешнюю поверхность предохраняемых от коррозии изделий специальных защитных материалов.

Для защиты неизолированных трубопроводов и других конструкций необходимо использовать существенные токи, что экономически невыгодно и технически сложно.

3 Катодная защита элементов автомобиля

Коррозия – активный и весьма агрессивный процесс. Качественная защита узлов автомобиля от ржавления вызывает немало проблем у автолюбителей. Коррозионному разрушению подвергаются все без исключения транспортные средства, ведь ржавление начинается даже тогда, когда на лакокрасочном покрытии машины появляется маленькая царапина.

Катодная технология предохранения автомобиля от коррозии достаточно распространена в наши дни. Ее применяют наряду с использованием антикоррозионных красок и всевозможных мастик. Под такой методикой понимают подачу электрического потенциала на поверхность той или иной детали автомобиля, что приводит к эффективному и длительному замедлению ржавления.

При описываемой защите транспортного средства катодом являются специальные пластинки, которые накладывают на наиболее уязвимые его узлы. А роль анода играет корпус автомобиля. Подобное распределение потенциалов обеспечивает целостность корпуса машины, так как разрушению подвергаются только катодные пластины, а основной металл не корродирует.

Под уязвимыми местами транспортного средства, которые можно защитить по катодной методике, понимают:

  • заднюю и переднюю части днища;
  • арку заднего колеса;
  • области фиксации подфарников и непосредственно фар;
  • стыки крыла с колесом;
  • внутренние зоны дверей и порогов;
  • пространство за щитками колес (передних).

Для защиты автомобиля необходимо приобрести специальный электронный модуль (некоторые умельцы изготавливают его самостоятельно) и протекторы-пластины. Модуль монтируют в салоне машины, подсоединяют к бортовой сети (он должен быть запитанным при отключении автодвигателя). Установка устройства занимает буквально 10–15 минут. Причем энергии оно берет минимум, а антикоррозионную защиту гарантирует весьма качественную.

Защитные пластины могут иметь разный размер. Их число также отличается в зависимости от того, в каких местах автомобиля они монтируются, а также от того, какие геометрические параметры имеет электрод. На практике пластин нужно тем меньше, чем больший размер имеет электрод.

Защита от коррозии автомобиля по катодной методике производится и иными сравнительно простыми способами. Самый элементарный – подсоединить проводом “плюс” аккумулятора автомобиля к обычному металлическому гаражу. Обратите внимание – для подключения необходимо обязательно использовать резистор.

Читайте также:
Что лучше пескобетон или сухая смесь

4 Защита трубопроводов методом катодной поляризации

Разгерметизация различных по назначению трубопроводов происходит во многих случаях из-за их коррозионного разрушения, вызываемого появлением разрывов, трещин и каверн. Особенно подвержены ржавлению подземные коммуникации. На них образуются зоны с разным потенциалом (электродным), что обуславливается гетерогенностью грунта и неоднородным составом металлов, из которых изготавливаются трубы. За счет появления указанных зон начинается процесс активного формирования коррозионных гальванических компонентов.

Катодная поляризация трубопроводов, выполняемая по схемам, описанным в начале статьи (гальваника или внешний источник энергии), базируется на уменьшении скорости растворения материала труб в процессе их эксплуатации. Достигается подобное уменьшение посредством смещения коррозионного потенциала в зону, имеющую по отношению к естественному потенциалу более отрицательные показатели.

Еще в первой трети 20 столетия был определен потенциал катодной поляризации металлов. Его показатель равняется –0,85 вольт. В большинстве грунтов естественный потенциал металлических конструкций находится в диапазоне от –0,55 до –0,6 вольт.

Это означает, что для эффективной защиты трубопроводов требуется “передвинуть” коррозионный потенциал в отрицательную сторону на 0,25-0,3 вольт. При такой его величине практическое влияние ржавления на состояние коммуникаций почти полностью нивелируется (коррозия за год имеет скорость не более 10 микрометров).

Методика с применением источника тока (внешнего) считается трудоемкой и достаточно сложной. Зато она обеспечивает высокий уровень защиты трубопроводов, ее энергетический ресурс ничем не ограничивается, при этом сопротивление (удельное) грунта оказывает минимальное влияние на качество защитных мероприятий.

Источниками питания для катодной поляризации обычно являются воздушные электролинии на 0,4; 6 и 10 кВ. На местностях, где таковых нет, допускается использование газо-, термо и дизель-генераторов в качестве источников энергии.

Ток-“защитник” распределяется неравномерно по протяженности трубопроводов. Наибольшая его величина отмечается в так называемой точке дренажа – в месте, где производится подключение источника. Чем больше расстояние от этой точки, тем меньше защищены трубы. При этом и чрезмерный ток непосредственно в зоне подключения оказывает негативное влияние на трубопровод – высока вероятность водородного растрескивания металлов.

Метод с использованием гальванических анодов демонстрирует неплохую эффективность в грунтах с малым показателем омности (до 50 ом*м). В грунтах высокоомной группы его не применяют, так как особых результатов он не дает. Здесь стоит добавить, что аноды изготавливают из сплавов на основе, алюминия, магния и цинка.

5 Коротко о станциях катодной защиты (СКЗ)

Для антикоррозионной защиты трубопроводов, проложенных под землей, вдоль трассы их залегания устанавливают СКЗ, включающие в себя:

  • анодное заземление;
  • источник тока;
  • пункт контроля и измерения;
  • кабели и провода, выполняющие соединительные функции.

Станции подключают к сетям электрического тока либо к автономным устройствам. Разрешается устанавливать на СКЗ несколько заземлений и источников энергии тогда, когда в одном подземном коридоре проложено две и более ниток трубопровода. Это, правда, влечет за собой увеличение расходов на проведение антикоррозионных мероприятий.

Если монтируется всего одна установка на многониточные коммуникации, ее соединение с трубами осуществляется посредством особых блоков. Они не позволяют формироваться сильным гальваническим парам, возникающим при монтаже глухих перемычек на трубные изделия. Указанные блоки изолируют трубы друг от друга, а также дают возможность выбирать на каждом элементе трубопроводов требуемый потенциал, гарантирующий максимальную защиту конструкции от ржавления.

Выходное напряжение на катодных станциях может регулироваться автоматически (установка в этом случае оснащается тиристорами) или вручную (оператор переключает при необходимости трансформаторные обмотки). В ситуациях, когда СКЗ функционируют в изменяющихся во времени условиях, рекомендуется эксплуатировать станции с автоматической регулировкой напряжения.

Они сами следят за показателями сопротивления (удельного) грунта, появлением блуждающих токов и прочих факторов, оказывающих негативное воздействие на качество защиты, и автоматически корректируют работу СКЗ. А вот в системах, где защитный ток и показатель сопротивления в его цепи остаются неизменными, лучше использовать установки с ручной настройкой напряжения на выходе.

Добавим, что регулирование в автоматическом режиме производится по одному из двух показателей:

  • по току защиты (гальваностатические преобразователи);
  • по потенциалу объекта, который защищается (потенциостатические преобразователи).

6 Информация об известных станциях катодной защиты

Среди популярных отечественных СКЗ можно выделить несколько установок. Очень востребованной является станция Минерва–3000 – мощная система, разработанная французскими и российскими инженерами для объектов Газпрома. Достаточно одной Минервы, чтобы надежно защитить от ржавления до 30 километров трубопроводов. Станция обладает такими основными достоинствами:

  • уникальная технологичность выпуска всех ее комплектующих;
  • повышенная мощность СКЗ (можно предохранять коммуникации с очень плохим защитным покрытием);
  • самовосстановление (после аварийных перегрузок) режимов работы станции на протяжении 15 секунд;
  • наличие высокоточного цифрового оборудования для контроля рабочих режимов и системы терморегулирования;
  • наличие защитных схем от перенапряжения измерительных и входных цепей;
  • отсутствие подвижных узлов и герметичность электрошкафа.

Кроме того, к Минерва–3000 можно подключать установки для удаленного контроля над работой станции и дистанционного управления ее оборудованием.

Отличными техническими показателями обладают и системы АСКГ-ТМ – современные телемеханизированные адаптивные станции для защиты электрокабелей, городских и магистральных трубопроводов, а также емкостей, в которых хранят газ и нефтепродукты. Такие устройства выпускаются с разными показателями (от 1 до 5 киловатт) выходной мощности. Они располагают многофункциональным телеметрическим комплексом, позволяющим выбирать конкретный рабочий режим СКЗ, мониторить и изменять параметры станции, а также обрабатывать поступающую информацию и отправлять ее оператору.

Преимущества использования АСКГ-ТМ:

  • возможность встраивания в SCADA-комплексы за счет поддержки ОРС-технологии;
  • резервный и главный канал связи;
  • выбор значения мощности (выходной);
  • повышенная отказоустойчивость;
  • большой интервал рабочих температур;
  • уникальная точность настройки выходных параметров;
  • предохранение от напряжения силовых выходов системы.

Имеются СКЗ и других типов, сведения о которых несложно найти на специализированных сайтах в интернете.

7 Какие объекты можно защищать при помощи катодной поляризации?

Кроме защиты автомобилей и трубопроводов рассматриваемые методики поляризации активно используются для предохранения от коррозии арматуры, входящей в железобетонные конструкции (здания, дорожные объекты, фундаменты и так далее). Обычно арматура представляет собой единую электросистему, которая при попадании в нее хлоридов и воды активно корродирует.

Катодная поляризация в сочетании с операцией санации бетона останавливает коррозионные процессы. В данном случае необходимо применять два типа анодов:

  • основные – из титана, графита или их комбинации с покрытием металлооксидного вида, а также кремнистого чугуна;
  • распределительные – стержни из сплавов титана с добавочным слоем металлической защиты либо с неметаллическим электропроводящим покрытием.
Читайте также:
Технология и особенности росписи стен в интерьере

Регулируя внешний ток, поступающий на железобетонную конструкцию, осуществляют выбор потенциала арматуры.

Поляризация считается незаменимой методикой для защиты стационарных строений, размещаемых на континентальном шельфе, в газовой и нефтяной промысловых сферах. Первоначальные защитные покрытия на таких объектах невозможно восстановить (требуется их демонтаж и транспортировка в сухие ангары), а значит, остается один выход – катодная защита металлов.

Для предохранения от морской коррозии применяется гальваническая поляризация гражданских кораблей посредством анодов из цинка, магния, алюминиевых сплавов. На берегу (во время ремонтов и стоянок) судна подключают к СКЗ, аноды для которых делают из платинированного титана.

Также катодная защита используется для предохранения от разрушения внутренних частей сосудов и емкостей, а также труб, которые контактируют со сточными промышленными водами и иными агрессивными электролитами. Поляризация в данном случае увеличивает время безремонтного применения указанных конструкций в 2–3 раза.

Что такое катодная защита трубопроводов и как она действует?

Трубопроводные магистрали – это на сегодняшний день наиболее распространенное средство для осуществления транспортировки носителей энергии. Очевидный их недостаток – подверженность образованию ржавчины. Для этого выполняется катодная защита магистральных трубопроводов от коррозии. В чем же ее принцип действия?

  1. Причины коррозии
  2. Подверженность коррозии магистральных трубопроводных сетей
  3. Электрохимическая коррозия от грунта
  4. Коррозия под влиянием блуждающих токов
  5. Коррозионное растрескивание под влиянием напряжения
  6. Коррозия под влиянием микроорганизмов
  7. Что такое электрохимическая защита
  8. Как классифицируется электрохимическая защита
  9. Об особенностях электрохимической защиты
  10. Катодная защита
  11. Защита от коррозии обустройством дренажа

Причины коррозии

Сети трубопроводов систем жизнеобеспечения распространены по всей территории России. С их помощью эффективно транспортируется газ, вода, нефтепродукты и нефть. Не так давно был проложен трубопроводов для транспортировки аммиака. Большинство видов трубопроводов выполнены из металла, а главный их враг – это коррозия, видов которой имеется много.

Причины образования ржавчины на металлических поверхностях основаны на свойствах окружающей среды, как наружной, так и внутренней коррозии трубопроводов. Опасность образования коррозии для внутренних поверхностей основана на:

  1. Взаимодействии с водой.
  2. Наличии в воде щелочей, солей или кислот.

Такие обстоятельства могут сложиться на магистральных водопроводах, системах горячего водоснабжения (ГВС), пара и отопления. Не менее важным фактором является способ прокладки трубопровода: наземный или подземный. Первый проще обслуживать и устранять причины образования ржавчины, по сравнению со вторым.

При способе прокладывания “труба в другую трубу” риск возникновения коррозии находится на невысоком уровне. При непосредственном выполнении монтажа трубопровода на открытом воздухе возможно образование ржавчины от взаимодействия с атмосферой, что тоже приводит к изменению конструкции.

Согласно предназначению трубопроводы с риском возникновения коррозии подразделяются на:

  • магистральные;
  • промысловые;
  • для систем отопления и жизнеобеспечения населения;
  • для сточной воды от промышленных предприятий.

Подверженность коррозии магистральных трубопроводных сетей

Коррозия трубопроводов данного типа наиболее хорошо изучена, и их защита от воздействия внешних факторов определена стандартными требованиями. В нормативных документах рассматриваются способы защиты, а не причины, исходя из которых происходит образование ржавчины.

Не менее важно учитывать, что при этом рассматривается только наружная коррозия, которой подвержен внешний участок трубопровода, так как внутри магистрали проходят инертные газы. Не столь опасно в этом случае контактирование металла с атмосферой.

Для защищенности от коррозии по ГОСТ рассматриваются для нескольких участок трубопровода: повышенной и высокой опасности, а также коррозионно-опасных.

Воздействие негативных факторов из атмосферы для участков повышенной опасности или виды коррозии:

  1. От источников постоянного тока возникновение блуждающих токов.
  2. Воздействие микроорганизмов.
  3. Созданное напряжение провоцирует растрескивание металла.
  4. Хранение отходов.
  5. Соленые почвы.
  6. Температура транспортируемого вещества выше 300 °С.
  7. Углекислотная коррозия нефтепровода.

Монтер по защите подземных трубопроводов от коррозии должен знать конструкцию трубопровода и требования СНиП.

Электрохимическая коррозия от грунта

Вследствие разности напряжений, образовавшихся на отдельных участках трубопроводов, возникает поток электронов. Процесс образования ржавчины происходит по электрохимическому принципу. На основании этого эффекта часть металла в анодных зонах растрескивается и перетекает в основание почвы. После взаимодействия с электролитом образовывается коррозия.

Одним из значимых критериев для обеспечения защиты от негативных проявлений является длина магистрали. На пути попадаются почвы с разным составом и характеристикой. Все это способствует возникновению разности напряжений между частями проложенных трубопроводов. Магистрали обладают хорошей проводимостью, поэтому происходит образование гальванопар с достаточно большой протяженностью.

Путем проведения исследовательских работ установлена прямая зависимость между глубиной и площадью образованной ржавчины на металле. Это основано на том, что металл с большей площадью поверхности наиболее уязвим к внешним негативным проявлениям. К частным случаям можно отнести проявление на стальных сооружениях значительно меньших количеств разрушений под действием электрохимического процесса.

Агрессивность грунтов к металлу, прежде всего, определяется их собственной структурной составляющей, влажностью, сопротивлением, насыщенностью щелочами, воздушной проницаемостью и иными факторами. Монтер по защите подземных трубопроводов от коррозии должен быть ознакомлен с проектом на строительство магистрали.

Коррозия под влиянием блуждающих токов

Ржавчина может возникать от переменного и постоянного потока электронов:

  • Образование ржавчины под воздействием тока постоянных величин. Блуждающими токами называются токи, находящиеся в почве и в конструктивных элементах, расположенных под землей. Их происхождение антропогенное. Они возникают в результате эксплуатации технических устройств постоянного тока, распространяющегося от зданий или сооружений. Ими могут быть сварочные инверторы, систем защиты от катодов и иные устройства. Ток стремится пройти по пути наименьшего показателя сопротивления, в результате, при имеющихся в наличии трубопроводах в земле, току будет гораздо легче пройти через металл. Анодом является участок трубопровода, из которого блуждающий ток выходит на поверхность почвы. Часть трубопровода, в который попадает ток, играет роль катода. На описанных анодных поверхностях токи имеют повышенную плотность, поэтому именно в этих местах образовываются значительные коррозионные места. Скорость коррозии не ограничивается и может быть до 20 мм в год.
  • Образование ржавчины под воздействием переменного тока. При расположении около магистралей линий электропередач с напряжением сети свыше 110 кВ, а также параллельном расположении трубопроводов под влиянием переменных токов образовывается коррозия, в том числе коррозия под изоляцией трубопроводов.
Читайте также:
Установка для пенобетона

Коррозионное растрескивание под влиянием напряжения

Если на металлическую поверхность одновременно воздействуют внешние негативные факторы и высокое напряжение от ЛЭП, создающее растягивающие усилия, то происходит образование ржавчины. Согласно проведенным исследованиям получила свое место водородно-коррозионная новая теория.

Трещины небольшого размера образовываются при насыщении трубы водородом, которое после обеспечивает увеличение давления изнутри до показателей, выше положенного эквивалента связи атомов и кристаллов.

После того как трещина раскроется, происходит ускорение процесса ржавление металла, которое обеспечивается грунтовым электролитом. В итоге под влиянием механических воздействий металл подвергается медленному разрушению.

Коррозия под влиянием микроорганизмов

Микробиологической коррозией называется процесс образования ржавчины на трубопроводе под влиянием живых микроорганизмов. Это могут быть водоросли, грибки, бактерии, в их числе простейшие организмы. Установлено, что размножение бактерий наиболее существенно влияет на этот процесс. Для поддержания жизнедеятельности микроорганизмов необходимо создание условий, а именно нужен азот, влажность, воды и соли. Также условия такие, как:

  1. Температурно-влажностные показатели.
  2. Давление.
  3. Наличие освещенности.
  4. Кислород.

При выделении кислотной среды организмы также могут вызвать коррозию. Под их влиянием на поверхности проявляются каверны, имеющие черный цвет и неприятный запах сероводорода. Бактерии, содержащие сульфаты присутствуют практические во всех почвах, но скорость коррозии увеличивается при увеличении их количества.

Что такое электрохимическая защита

Электрохимическая защита трубопроводов от коррозии – это комплекс мер, направленных на недопущение развития коррозии под воздействием электрического поля. Для преобразования постоянного тока применяются специализированные выпрямители.

Катодная защита трубопроводов от коррозии сопровождает электролитической защищенностью с достаточной проводимостью среды. Такую функцию выполняет грунт, при прокладывании металлических подземных магистралей. Контактирование электродов осуществляется через токопроводящие элементы.

Индикатор для определения показателей коррозии – это высоковольтный вольтметр или датчик коррозии. С помощью этого прибора контролируется показатель между электролитом и грунтом, конкретно для этого случая.

Как классифицируется электрохимическая защита

Коррозия и защита магистральных трубопроводов и резервуаров от нее контролируются двумя способами:

  • К металлической поверхности подводиться источник от тока. Этот участок приобретает отрицательный заряд, то есть исполняет роль катода. Аноды – это инертные электроды, которые никакого отношения к конструктивному исполнению не имеют. Этот способ считается наиболее распространенным, и электрохимическая коррозия не возникает. Такая методика направлена на недопущение следующих разновидностей коррозий: питтинговой, по причине присутствия блуждающих токов, кристаллического типа нержавеющей стали, а также растрескиванию элементов из латуни.
  • Гальванический способ. Защита магистральных трубопроводов или протекторная защита осуществляется металлическими пластинами с большими показателями отрицательных зарядов, изготовленными из алюминия, цинка, магния либо их сплавов. Аноды – это два элемента, так называемые ингибиторы, при этом медленное разрушение протектора способствует поддержанию в изделии катодного тока. Протекторная защита используется крайне редко. ЭХЗ выполняется на изоляционное покрытие трубопроводов.

Об особенностях электрохимической защиты

Основной причиной разрушения трубопроводов является следствие коррозии металлических поверхностей. После образования ржавчины образовывают трещины, разрывы, каверны, которые постепенно увеличиваются в размерах и способствуют разрыву трубопровода. Это явление чаще происходит у магистралей, проложенных под землей, или соприкасающихся с грунтовыми водами.

Для замедления скорости коррозии следует снизить катодное напряжение на 0,3В. При таком раскладе, скорость коррозии не будет более 10 мкм/год, а это существенно продлить срок службы технических устройств.

Одна из значимых проблем – это наличие блуждающих токов в грунте. Такие токи возникают от заземлений зданий, сооружений, рельсовых путей и иных устройств. Тем более невозможно провести точную оценку, в каком месте они могут проявиться.

Для создания разрушающего воздействия достаточно заряда стальных трубопроводов положительным потенциалом по отношению к электролитическому окружению, к ним относятся магистрали, проложенные в грунте.

Для того чтобы обеспечить контур током необходимо подвести внешнее напряжение, параметры которого будут достаточными для пробивания сопротивления грунтового основания.

Как правило, подобные источники – это линии электропередач с показателями мощностей от 6 до 10 кВт. Если электрический ток невозможно подвести, то можно использовать дизельные или газовые генераторы. Монтер по защите подземных трубопроводов от коррозии перед выполнением работ должен быть ознакомлен с проектными решениями.

Катодная защита

Чтобы снизился процент возникновения ржавчины на поверхности труб, используются станции электродной защиты:

  1. Анодная, выполненная в виде заземляющих проводников.
  2. Преобразователи постоянных потоков электронов.
  3. Оборудование пункта управления процессом и контроля за этим процессом.
  4. Кабельные и проводные соединения.

Наиболее распространенной на территории России является высокотехнологичная установка – Миневра -3000. Ее мощности предостаточно для осуществления защиты 30000 м магистралей.

Достоинства технического устройства:

  • высокие характеристики мощности;
  • обновление режима работы после перегрузок через четверть минуты;
  • с помощью цифрового регулирования осуществляется контроль за рабочими параметрами;
  • герметичность высокоответственных соединений;
  • подключение устройства к дистанционному контролю за процессом.

Также применяются АСКГ-ТМ, хотя они их мощность невелика, их оснащение телеметрическим комплексом или дистанционным управлением позволяет им быть не менее популярными.

Схема изоляционной магистрали водопровода или газопровода должна быть на месте проведения работ.

Видео: катодная защита от коррозии – какой бывает и как выполняется?

Защита от коррозии обустройством дренажа

Монтер по защите подземных трубопроводов от коррозии должен быть ознакомлен с устройством дренажа. Такая защита от образования ржавчины трубопроводов от блуждающих токов производится устройством дренажа, необходимым для отвода этих токов в другой участок земли. Всего существует несколько вариантов дренажей.

  1. Выполненный под землей.
  2. Прямой.
  3. С полярностями.
  4. Усиленный.

При осуществлении земляного дренажа производят установку электродов к анодные зоны. Для обеспечения прямой дренажной линии выполняется электрическая перемычка, соединяющая трубопровод с отрицательным полюсом от источников токов, к примеру, заземлению от жилого дома.

Поляризованный дренаж имеет одностороннюю проводимость, то есть при появлении положительного заряда на заземляющем контуре он автоматически отключается. Усиленный дренаж функционирует от преобразователя тока, дополнительно подключенному в электрическую схему, а это улучшает отвод блуждающих токов от магистрали.

Читайте также:
Шпатель для силикона - виды, формы и размеры

Прибавка на коррозию трубопроводов проводится расчетным путем, согласно РД.

Монтер по защите подземных трубопроводов от коррозии должен обладать знаниями и навыками, обучен Правилам и периодически проходить медосмотр, и сдавать экзамены в присутствии инспектора Ростехнадзора.

Варианты катодной защиты трубопроводов – преимущества и недостатки способов

До сих пор при обустройстве протяжённых промышленных трубопроводов наиболее востребованным материалом изготовления труб является сталь. Обладая множеством замечательных свойств, таких как механическая прочность, способность функционировать при больших значениях внутренних давления и температуры и стойкость к сезонным изменениям погоды, сталь имеет и серьёзный недостаток: склонность к коррозии, приводящей к разрушению изделия и, соответственно, неработоспособности всей системы.

Один из способов защиты от этой угрозы – электрохимический, включающий катодную и анодную защиту трубопроводов; об особенностях и разновидностях катодной защиты будет рассказано ниже.

Определение электрохимической защиты

Электрохимическая защита трубопроводов от коррозии – процесс, осуществляемый при воздействии постоянного электрического поля на предохраняемый объект из металлов или сплавов. Поскольку обычно доступен для работы переменный ток, используются специальные выпрямители для преобразования его в постоянный.

В случае катодной защиты трубопроводов защищаемый объект путём подачи на него электромагнитного поля приобретает отрицательный потенциал, то есть делается катодом.

Соответственно, если ограждаемый от коррозии отрезок трубы становится «минусом», то заземление, подводящееся к нему, – «плюсом» (т.е. анодом).

Антикоррозионная защита по такой методике невозможна без присутствия электролитической, с хорошей проводимостью, среды. В случае обустройства трубопроводов под землёй её функцию выполняет грунт. Контакт же электродов обеспечивается путём применения хорошо проводящих электрический ток элементов из металлов и сплавов.

В ходе протекания процесса между средой-электролитом (в данном случае грунтом) и защищаемым от коррозии элементом возникает постоянная разница потенциалов, значение которой контролируется при помощи высоковольтных вольтметров.

Классификация методик электрохимической катодной защиты

Такой способ предупреждения коррозии был предложен в 20-х годах XIX века и поначалу использовался в судостроении: медные корпуса кораблей обшивались протекторами-анодами, значительно снижающими скорость корродирования металла.

После того, как была установлена эффективность новой технологии, изобретение стало активно применяться в других областях промышленности. Через некоторое время оно было признано одним из самых эффективных способов защиты металлов.

В настоящее время используется два основных типа катодной защиты трубопроводов от коррозии:

  1. Самый простой способ: к металлическому изделию, требующему предохранения от коррозии, подводится внешний источник электрического тока. В таком исполнении сама деталь приобретает отрицательный заряд и становится катодом, роль же анода выполняют инертные, не зависящие от конструкции, электроды.
  2. Гальванический метод. Нуждающаяся в защите деталь соприкасается с защитной (протекторной) пластиной, изготавливаемой из металлов с большими значениями отрицательного электрического потенциала: алюминия, магния, цинка и их сплавов. Анодами в этом случае становятся оба металлических элемента, а медленное электрохимическое разрушение пластины-протектора гарантирует поддержание в стальном изделии требуемого катодного тока. Через более или менее долгое время, в зависимости от параметров пластины, она растворяется полностью.

Характеристики первого метода

Этот способ ЭХЗ трубопроводов, в силу простоты, наиболее распространён. Применятся он для предохранения крупных конструкций и элементов, в частности, трубопроводов подземного и наземного типов.

Методика помогает противостоять:

  • питтинговой коррозии;
  • коррозии из-за присутствия в зоне расположения элемента блуждающих токов;
  • коррозии нержавеющей стали межкристального типа;
  • растрескиванию латунных элементов вследствие повышенного напряжения.

Характеристики второго метода

Эта технология предназначается, в отличие от первой, в том числе для защиты изделий небольших размеров. Методика наиболее популярна в США, в то время как в Российской Федерации используется редко. Причина в том, что для проведения гальванической электрохимическая защита трубопроводов необходимо наличие на изделии изоляционного покрытия, а в России магистральные трубопроводы таким образом не обрабатываются.

Особенности ЭХЗ трубопроводов

Главной причиной выхода трубопроводов из строя (частичной разгерметизации или полного разрушения отдельных элементов) является коррозия металла. В результате образования на поверхности изделия ржавчины на его поверхности появляются микроразрывы, раковины (каверны) и трещины, постепенно приводящие к выходу системы из строя. Особенно эта проблема актуальна для труб, пролегающих под землёй и всё время соприкасающихся с грунтовыми водами.

Принцип действия катодной защиты трубопроводов от коррозии предполагает создание разности электрических потенциалов и реализуется двумя вышеописанными способами.

После проведения измерений на местности было установлено, что необходимый потенциал, при котором замедляется любой коррозионный процесс, составляет –0,85 В; у находящихся же под слоем земли элементов трубопровода его естественное значение равно –0,55 В.

Чтобы существенно замедлить процессы разрушения материалов, нужно добиться снижения катодного потенциала защищаемой детали на 0,3 В. Если добиться этого, скорость коррозии стальных элементов не будет превышать значений 10 мкм/год.

Одну из самых серьёзных угроз металлическим изделиям представляют блуждающие токи, то есть электрические разряды, проникающие в грунт вследствие работы заземлений линий энергопередачи (ЛЭП), громоотводов или передвижения по рельсам поездов. Невозможно определить, в какое время и где они проявятся.

Разрушающее воздействие блуждающих токов на стальные элементы конструкций проявляется, когда эти детали обладают положительным электрическим потенциалом относительно электролитической среды (в случае трубопроводов – грунта). Катодная методика сообщает защищаемому изделию отрицательный потенциал, в результате чего опасность коррозии из-за этого фактора исключается.

Оптимальным способом обеспечения контура электрическим током является использование внешнего источника энергии: он гарантирует подачу напряжения, достаточного для «пробивания» удельного сопротивления грунта.

Обычно в роли такого источника выступают воздушные линии энергопередачи с мощностями 6 и 10 кВт. В случае отсутствия на участке пролегания трубопровода ЛЭП следует использовать генераторы мобильного типа, функционирующие на газе и дизельном топливе.

Что нужно для катодной электрохимической защиты

Для обеспечения снижения коррозии на участках пролегания трубопроводов используются особые приспособления, называемые станциями катодной защиты (СКЗ).

Эти станции включают в себя следующие элементы:

  • заземление, выступающее в роли анода;
  • генератор постоянного тока;
  • пункт контроля, измерений и управления процессом;
  • соединительные приспособления (провода и кабели).
Читайте также:
Что делать, если слайм красит руки: почему и как исправить, правила ухода

Станции катодной защиты вполне эффективно выполняют основную функцию, при подключении к независимому генератору или ЛЭП защищая одновременно несколько расположенных поблизости участков трубопроводов.

Регулировать параметры тока можно как вручную (заменяя трансформаторные обмотки), так и в автоматизированном режиме (в случае, когда в контуре имеются тиристоры).

Наиболее совершенной среди применяемых на территории РФ станций катодной защиты признаётся «Минерва-3000» (проект СКЗ по заказу «Газпрома» был создан французскими инженерами). Одна такая станция позволяет обеспечить безопасность около 30 км пролегающего под землей трубопровода.

  • высокий уровень мощности;
  • возможность быстрого восстановления после возникновения перегрузок (не более 15 секунд);
  • оснащённость необходимыми для контроля рабочих режимов узлами цифровой регулировки системы;
  • абсолютно герметичные ответственные узлы;
  • возможность контролировать функционирование установки удалённо, при подключении специального оборудования.

Вторая наиболее популярная в России СКЗ – «АСКГ-ТМ» (адаптивная телемеханизированная станция катодной защиты). Мощность таких станций меньше, чем упомянутых выше (от 1 до 5 кВт), но их возможности автоматического контроля работы улучшены за счёт наличия в исходной комплектации телеметрического комплекса с дистанционным управлением.

Обе станции требуют источника напряжения мощностью 220 В, управляются с помощью модулей GPRS и характеризуются достаточно скромными габаритами – 500×400×900 мм при весе 50 кг. Срок эксплуатации СКЗ – от 20 лет.

Технология и основные методы катодной защиты от коррозии

Для металлических листов и деталей применяют разные технологии антикоррозийной защиты. Большое распространение получила катодная защита от коррозии. Этот способ обладает рядом характерных особенностей, а чаще всего катодную защиту применяют для крупных объектов. Это могут быть трубы, автомобили, металлические свайные конструкции, морские судна. Как именно происходит защита трубопроводов от коррозии на физическом и химическом уровне?

Основные технологии катодной защиты

Катодная защита — это специальный метод электрохимической защиты металлических объектов от ржавления и коррозии. Главный принцип заключается в том, что на защищаемый металлический объект накладывается отрицательный потенциал электрического тока. Это позволяет минимизировать контакт металла с внешними ионами и веществами, обладающими электрическим зарядом. Технология была разработана примерно 200 лет назад британским ученым Гемфри Дэви. Для подтверждения своей теории он составил несколько докладов, которые были переданы правительству. На основании этих докладов было произведена первая в мире катодная защита крупного промышленного корабля.

Антикоррозийная защита распространяется на различные объекты — трубопроводы, автомобили, дороги, самолеты и так далее. Обратите внимание, что тип металла значения не имеет — это может быть железо, медь, серебро, золото, алюминий, титан и любой другой металл, а также различные сплавы (с лигирующими добавками или без них). Одинаково успешно может выполняться защита от коррозии автомобиля, отдельных фрагментов труб, различных декоративных изделий сложной формы и так далее.

1 способ

Подключение детали к внешнему источнику электрического тока (обычно эту роль выполняются компактные подстанции). В случае применения технологии металлический объект выполняет функцию катода, а электрическая подстанция — функцию анода. Благодаря этому происходит сдвиг электрического потенциала, что позволяет защитить металлический объект от электрически активных частиц. Основные сферы применение данной технологии — защита трубопроводов, сварных конструкций, различных платформ, элементов дорожного покрытия и так далее. Эта технология является достаточно простой и универсальной, поэтому в мире она пользуется высокой популярностью. Ее главный минус — необходимость подключения защитного контура к внешнему источнику тока, что может быть неудобно в случае объектов, которые располагаются вдали от человеческой цивилизации (частично эта проблема решается за счет применения автономных источников энергии).

2 способ

Метод гальванической поляризации (технология гальванических анодов). Эта методика также является достаточно простой и интуитивно понятной: металлический объект присоединяется к другому, который обладает отрицательным зарядом (чаще всего этот элемент из легких металлов — из алюминия, цинка, магния). Технологию гальванической поляризации обычно применяют в тех случаях, когда на поверхности объекта есть защитный слой. Эта технология популярна в Америке, где есть большое количество малонаселенных пунктов и где наблюдается дефицит внешних источников энергии. Эксперты утверждают, что гальваническая поляризации могла бы стать очень популярной в России из-за особенностей нашей географии, если бы на отечественные трубопроводы наносилось защитное покрытие (при таком сценарии применение первой технологии было бы весьма затруднительно, что вынуждало бы людей искать альтернативу).

Технология катодной поляризации

В данном случае используется так называемый наложенный ток. Для его подачи на металлический объект используется внешний проводник (часто) или источник тока (редко). При контакте с электрически активной частицей происходит следующее — частица под действием сил электрического притяжения перемещается к защитному элементу с отрицательным зарядом, где происходит «утилизация» этих частиц.

Последствия такой «утилизации» очевидны — защитный элемент со временем сам покрывается коррозией и приходит в негодность. Поэтому данную технологию очень часто называют методом жертвенного электрода (вместо нашей детали происходит ржавление «электрода-жертвы»).

Помимо силы тока и напряжения при работе с катодной поляризацией нужно учитывать еще один важный параметр — это омическое напряжение. В техническом смысле этот параметр отражает тот факт, что по мере протекания электрического заряда со временем напряжение тока в контуре падает. Само падение происходит из-за того, что протекание катодного тока происходит по контуру с более низким зарядом. В случае правильной сборки контура этот показатель является достаточно маленьким — благодаря этому в контуре будет всегда сохраняться один и тот же ток одинаковой мощности.

Технология создания станций защиты

Еще одной технологией создания катодной защиты является подключение элемента к внешним источникам тока. В большинстве случаев для этих целей сооружаются специальные станции катодной защиты (СКЗ), которые состоят из нескольких элементов — главный источник тока, анодное заземление, различные кабели и провода, соединяющие отдельные элементы конструкции и вспомогательные пункты с механическим или компьютерным управлением, которые позволяют контролировать параметры.

Чаще всего данная технология используется для объектов, расположенных рядом с проводами электропередач — это могут быть трубопроводы, различные фабричные постройки и так далее. СКЗ могут работать во многопоточном режиме — в таком случае они будут обслуживать сразу несколько защитных систем. На трубах большое распространение получила практика, при которой на трубы ставится несколько отдельных блоков для более эффективного распределения тока. Дело все в том, что в случае протяженных трубопроводов в местах подключения труб к источникам тока формируются специальные точки с повышенным уровнем напряжения электрического поля — из-за этого может происходить повреждение труб. Применение подобных блоков позволяет распределить электричество равномерно по всему защитному контуру.

Читайте также:
Электрический лобзик по дереву: инструкция по выбору своими руками, особенности полотен

Автоматизация

Контрольные пункты могут работать как в ручном, так и в автоматическое режиме:

  • В случае ручного управления изменение параметров напряжения регулируется оператором. На физическом уровне регуляция осуществляется путем переключения работы трансформатора. Регулируется работа обмотки, что позволяет менять параметры электрического тока.
  • В случае автоматического управления изменение параметров напряжения регулируется самим устройством на основе параметров, которые когда-то задал оператор. На физическом уровне управление осуществляется с помощью специальных полупроводников-тиристоров. Они включаются или выключаются при отклонении параметров электрического тока от заданных параметров.

Особенности катодной защиты труб

Коррозия в трубопроводах обычно возникает из-за различных дефектов и повреждений труб — разрывы, растрескивание, появление щелей и так далее. Из-за коррозии нарушается герметизация труб, что может привести к полной или частичной поломке трубопровода. Особенно остро эта проблема стоит для подземных трубопроводов. При расположении труб под землей создаются участки с разным электрическим потенциалом. Это связано с неоднородностью грунта и наличия в земли различного мусора неорганического происхождения. При наличии серьезной разности потенциалов отрицательно заряженные ионы в земле начинают вступать в реакцию в металлом. Это приводит к коррозии, которая быстро разрушает трубопровод.

Электрический потенциал

Катодная защита трубопроводов от коррозии осуществляется по двум стандартным схемам. С помощью катодной поляризации и с помощью создания внешних станций. Защита трубопроводов должна быть направлена в первую очередь на снижения скорости разрушения материала трубы. Делается это с помощью уменьшения электрического потенциала трубы в сравнении с электрическим потенциалом грунта:

  • Электрический потенциал большинства современных труб составляет приблизительно 0,8-0,9 вольт.
  • Экспериментальным путем было показано, что основные породы грунта обладают потенциалом приблизительно 0,5-0,6 вольт.

Для уравнения электрических потенциалов необходимо снизить потенциал труб всего на 0,3-0,4 вольт. Это позволяет практически полностью остановить появление ржавчины. В случае правильного проведения работ скорость естественного ржавления составит менее 1 мм в год.

Выбор способа

Для труб подходит технология создания внешних станций защиты. В качестве источников питания в данном случае используют воздушные электролинии с напряжением от 500 до 10000 вольт. Чем больше напряжение, тем больше труб можно обслужить. Иногда таких линий нет на том или ином участке. В таком случае имеет смысл монтаж различных генераторов.

У технологии внешних станций есть один крупный недостаток. Для создания защиты придется проводить трудоемкие и сложные работы. Это значительно увеличивает стоимость создания трубопровода. При работе с большим напряжением в точке подачи электричества может создаваться избыточное электрическое напряжение — из-за этого может возникнуть водородное растрескивание труб, поэтому при проведении монтажных работ разводку электричества нужно производить аккуратно.

Вместо технологии защитных станций можно использовать методику применения гальванических анодов для создания эффекта поляризации. Эта технология подходит для грунтов с малым удельным сопротивлением (до 50 Ом на 1 кв. м). Если же удельное сопротивление грунта будет очень большим, то технология применения гальванических анодов является практически бесполезной в связи с ее малой эффективностью.

Особенности катодной защиты автомобилей

Коррозия на автомобилях часто появляется внезапно. Скорость её распространения очень высокая, поскольку у авто есть большое количество подвижных элементов. Во время эксплуатации в таких элементах могут образовываться различные маленькие трещины и вмятины. Это значительно увеличивает риск появления коррозии. Катодная защита автомобиля от коррозии обычно осуществляется путем перераспределения электрического потенциала.

Обычно используются специальные электронные модули, которые имеют компактные размеры и монтируются внутри автомобиля. Монтаж подобных блоков занимает не более 20 минут.

Дополнительная обработка

Также стоит обратить внимание, что метод катодной защиты обычно комбинируется с другими техниками:

  • Все основные детали автомобиля покрываются специальными красками и мастиками. Они создают на поверхности металла защитный слой. Этот слой обладает электрической нейтральностью. Поэтому при контакте с электрически активными веществами или ионами ржавление не происходит.
  • Некоторые элементы автомобиля могут покрываться защитными катодными пластинами, которые также минимизируют риск появления ржавчины. Пластинами обычно покрывают подвижные части, которые растрескиваются и повреждаются чаще всего. Это днище автомобиля, арки задних колес, фары, внутренние поверхности дверей и так далее.

Заключение

Коррозия ухудшает технико-эксплуатационные характеристики металла, из-за нее может происходить обрушение металлического объекта и так далее. Чтобы избежать этого сценария, может применяться катодная защита от коррозии. Принцип работы весьма прост — на поверхности металлического тока создается напряжение, которое приводит к оперативному удалению заряженных частиц, что позволяет избежать ржавления металла. Применяются две технологии катодной защиты — подключение к детали внешнего источника тока или подключение к детали дополнительного проводника, который обладает отрицательным зарядом.

Что такое электрохимическая защита и как выбрать катодную станцию

А. Г. Семенов, генеральный директор, СП «Элкон», г. Кишинэу; Л. П. Сыса, ведущий инженер по ЭХЗ, НПК «Вектор», г. Москва

Станции катодной защиты (СКЗ) являются необходимым элементом системы электрохимической (или катодной) защиты (ЭХЗ) подземных трубопроводов от коррозии. При выборе СКЗ исходят чаще всего из наименьшей стоимости, удобства обслуживания и квалификации своего обслуживающего персонала. Качество приобретаемого оборудования оценить обычно трудно. Авторы предлагают рассмотреть указанные в паспортах технические параметры СКЗ, которые определяют, насколько качественно будет выполняться основная задача катодной защиты.

Авторы не преследовали цель выражаться строго научным языком в определении понятий. В процессе общения с персоналом служб ЭХЗ мы поняли, что необходимо этим людям помочь систематизировать термины и, что еще более важно, дать им представление, что же происходит и в электросети, и в самой СКЗ.

Задача ЭХЗ

Катодная защита осуществляется при протекании электрического тока от СКЗ по замкнутой электрической цепи, образованной тремя включенными последовательно сопротивлениями:

Читайте также:
Трансформатор ТМГ: расшифровка, конструкция, технические характеристики

· сопротивление грунта между трубопроводом и анодом; I сопротивление растекания анода;

· сопротивление изоляции трубопровода.

Сопротивление грунта между трубой и анодом может меняться в широких пределах в зависимости от состава и внешних условий.

Анод является важной частью системы ЭХЗ, и служит тем расходным элементом, растворение которого обеспечивает саму возможность реализации ЭХЗ. Сопротивление его в процессе эксплуатации стабильно растет вследствие растворения, уменьшения эффективной площади рабочей поверхности и образования окислов.

Рассмотрим сам металлический трубопровод, который и является защищаемым элементом ЭХЗ. Металлическая труба снаружи покрыта изоляцией, в которой в процессе эксплуатации образуются трещины от воздействия механических вибраций, сезонных и суточных температурных перепадов и т.д. Через образовавшиеся трещины в гидро- и теплоизоляции трубопровода проникает влага и возникает контакт металла трубы с грунтом, так образуется гальваническая пара, способствующая выносу металла из трубы. Чем больше трещин и их размеры, тем больше металла выносится. Таким образом происходит гальваническая коррозия, в которой течет ток ионов металла, т.е. электрический ток.

Раз течет ток, то возникла замечательная идея взять внешний источник тока и включить его на встречу этому самому току, из-за которого происходит вынос металла и коррозия. Но возникает вопрос: какой величины этот самый рукотворный ток давать? Вроде бы такой, чтобы плюс на минус давал ноль тока выноса металла. А как измерить этот самый ток? Анализ показал, что напряжение между металлической трубой и грунтом, т.е. по обе стороны изоляции, должно находиться в пределах от -0,5 до -3,5 В (это напряжение называется защитным потенциалом).

Задача СКЗ

Задачей СКЗ является не только обеспечивать в цепи ЭХЗ ток, но и поддерживать его таким, чтобы защитный потенциал не выходил за принятые рамки.

Так, если изоляция новая, и она не успела получить повреждений, то ее сопротивление электрическому току высокое и нужен небольшой ток для поддержания нужного потенциала. При старении изоляции ее сопротивление падает. Следовательно, требуемый компенсирующий ток от СКЗ возрастает. Еще больше он возрастет, если в изоляции появились трещины. Станция должна уметь измерять защитный потенциал и менять свой выходной ток соответствующим образом. И ничего более, с точки зрения задачи ЭХЗ, не требуется.

Режимы работы СКЗ

Режимов работы ЭХЗ может быть четыре:

· без стабилизации выходных значений тока или напряжения;

· I стабилизации выходного напряжения;

· стабилизации выходного тока;

· I стабилизации защитного потенциала.

Скажем сразу, что в принятом диапазоне изменений всех влияющих факторов полностью обеспечивается выполнение задачи ЭХЗ только при использовании четвертого режима. Что и принято как стандарт для режима работы СКЗ.

Датчик потенциала выдает станции информацию об уровне потенциала. Станция изменяет свой ток в нужную сторону. Проблемы начинаются с момента, когда надо ставить это самый датчик потенциала. Ставить его нужно в определенном расчетном месте, нужно копать траншею для соединительного кабеля между станцией и датчиком. Тот, кто прокладывал какие-либо коммуникации в городе, знает, какая это морока. Плюс к этому датчик требует периодического обслуживания.

В условиях, когда возникают проблемы с режимом работы с обратной связью по потенциалу, поступают следующим образом. При использовании третьего режима принимают, что состояние изоляции в краткосрочном плане меняется мало и ее сопротивление остается практически стабильным. Следовательно, достаточно обеспечить протекание стабильного тока через стабильное сопротивление изоляции, и получаем стабильный защитный потенциал. В среднесрочном и долговременном плане необходимые корректировки может производить специально обученный обходчик. Первый и второй режимы не предъявляют к СКЗ высоких требований. Эти станции получаются простыми по исполнению и как следствие дешевыми, как в изготовлении, так и в эксплуатации. Видимо это обстоятельство и обуславливает применение таких СКЗ в ЭХЗ объектов, находящихся в условиях невысокой коррозионной активности среды. В случае если внешние условия (состояние изоляции, температура, влажность, блуждающие токи) изменяются до пределов, когда на защищаемом объекте образуется недопустимый режим – эти станции не могут выполнять свою задачу. Для корректировки их режима необходимо частое присутствие обслуживающего персонала, иначе задача ЭХЗ выполняется частично.

Характеристики СКЗ

В первую очередь, СКЗ необходимо выбирать исходя из требований, изложенных в нормативных документах. И, наверное, самым главным в этом случае будет ГОСТ Р 51164-98. В приложении «И» этого документа говорится, что КПД станции должен быть не ниже 70%. Уровень индустриальных помех, создаваемых СКЗ, должен быть не выше значений, указанных ГОСТ 16842, а уровень гармоник на выходе соответствовать ГОСТ 9.602.

В паспорте СКЗ обычно указываются: I номинальная выходная мощность;

КПД при номинальной выходной мощности.

Номинальная выходная мощность – мощность, которую может отдавать станция, при номинальной нагрузке. Обычно эта нагрузка составляет 1 Ом. КПД определяется как отношение номинальной выходной мощности к активной мощности, потребляемой станцией в номинальной режиме. И в этом режиме КПД самый высокий для любой станции. Однако большинство СКЗ работают далеко не в номинальном режиме. Коэффициент загрузки по мощности колеблется от 0,3 до 1,0. В этом случае реальный КПД для большинства выпускаемых сегодня станций будет заметно падать при снижении выходной мощности. Особенно это заметно для трансформаторных СКЗ с применением тиристоров в качестве регулирующего элемента. Для бестрансформаторных (высокочастотных) СКЗ падение КПД при уменьшении выходной мощности существенно меньше.

Общий вид изменения КПД для СКЗ разного исполнения можно видеть на рисунке.

Из рис. видно, что если вы используете станцию, к примеру, с номинальным КПД равным 70%, то будьте готовы к тому, что еще 30% полученной из сети электроэнергии вы истратили бесполезно. И это в самом лучшем случае номинальной выходной мощности.

При выходной мощности на уровне 0,7 от номинальной вы должны быть готовы уже к тому, что ваши потери электроэнергии сравняются с полезно затраченной энергией. Где же теряется столько энергии:

· омические (тепловые) потери в обмотках трансформаторов, дросселей и в активных элементах схемы;

Читайте также:
Унитаз подвесной – какой лучше выбрать

· затраты энергии для работы схемы управления станцией;

· потери энергии в виде радиоизлучения; потери энергии пульсаций выходного тока станции на нагрузке.

Эта энергия излучается в грунт от анода и не производит полезной работы. Поэтому так необходимо использовать станции с низким коэффициентом пульсаций, иначе бесполезно тратится недешевая энергия. Мало, того, что при больших уровнях пульсаций и радиоизлучения растут потери электроэнергии, но кроме этого эта бесполезно рассеянная энергия создает помехи для нормальной работы большого количества электронной аппаратуры, расположенной в окрестностях. В паспорте СКЗ указывается также необходимая полная мощность, попробуем разобраться с этим параметром. СКЗ забирает из электросети энергию и делает это в каждую единицу времени с такой интенсивностью, какой мы позволили ей это делать ручкой регулировки на панели управления станции. Естественно, что из сети можно брать энергию с мощностью, не превышающей мощность этой самой сети. И если напряжение в сети меняется синусоидально, то и наша возможность брать энергию из сети меняется синусоидально 50 раз в секунду. К примеру, в момент времени, когда напряжение сети переходит через ноль, из нее нельзя взять никакой мощности. Однако же, когда синусоида напряжения достигает своего максимума, то в этот момент наша возможность забирать из сети энергию максимальна. В любой другой момент времени эта возможность меньше. Таким образом, получается, что в любой момент времени мощность сети отличается от ее мощности в соседний момент времени. Эти значения мощности называются мгновенной мощностью в данный момент времени и таким понятием трудно оперировать. Поэтому договорились о понятии так называемой действующей мощности, которая определяется из воображаемого процесса, в котором сеть с синусоидальным изменением напряжения заменяется на сеть с постоянным напряжением. Когда подсчитали величину этого постоянного напряжения для наших электросетей, то получилось 220 В – ее назвали действующим напряжением. А максимальное значение синусоиды напряжения назвали амплитудным напряжением, и равно оно 320 В. По аналогии с напряжением ввели понятие действующего значения тока. Произведение действующего значения напряжения на действующее значение тока называют полной потребляемой мощностью, и ее значение указывают в паспорте СКЗ.

А используется полная мощность в самой СКЗ не полностью, т.к. в ней имеются различные реактивные элементы, которые не тратят энергию, а используют ее как бы для создания условий, чтобы остальная энергия прошла в нагрузку, а затем возвращают эту настроечную энергию обратно в сеть. Эту возвращаемую обратно энергию назвали реактивной энергией. Энергию, которая передается в нагрузку, – активной энергией. Параметр, который указывает отношение между активной энергией, которая должна быть передана в нагрузку, и полной энергией, подводимой к СКЗ, называется коэффициентом мощности и указывается в паспорте станции. И если мы согласуем свои возможности с возможностями питающей сети, т.е. синхронно с синусоидальным изменением напряжения сети отбираем из нее мощность, то такой случай называется идеальным и коэффициент мощности СКЗ, работающей с сетью таким способом, будет равен единице.

Активную энергию станция должна как можно эффективнее передать для создания защитного потенциала. Эффективность, с которой СКЗ это делает, и оценивается коэффициентом полезного действия. Сколько она тратит энергии, зависит от способа передачи энергии и от режима работы. Не вдаваясь в это обширное поле для обсуждения, скажем только, что трансформаторные и трансформаторнотиристорные СКЗ достигли своего предела совершенствования. У них нет ресурсов для улучшения качества своей работы. Будущее за высокочастотными СКЗ, которые с каждым годом становятся надежней и проще в обслуживании. По экономичности и качеству своей работы они уже превосходят своих предшественников и имеют большой резерв для совершенствования.

Потребительские свойства

К потребительским свойствам такого устройства как СКЗ можно отнести следующее:

1. Размеры, вес и прочность. Наверно, не нужно говорить, что чем меньше и легче станция, тем меньше затрат на ее транспортировку и установку как при монтаже, так и при ремонте.

2. Ремонтопригодность. Очень важна возможность быстрой замены станции или узла на месте. С последующим ремонтом в лаборатории, т.е. модульный принцип построения СКЗ.

3. Удобство в обслуживании. Удобство в обслуживании, кроме удобства транспортировки и ремонта, определяется, по нашему мнению, следующим:

наличие всех необходимых индикаторов и измерительных приборов, наличие возможности дистанционного управления и слежения за режимом работы СКЗ.

Исходя из вышесказанного можно сделать несколько выводов-рекомендаций:

1. Трансформаторные и тиристорно-трансформаторные станции безнадежно устарели по всем параметрам и не отвечают современным требованиям, особенно в области энергосбережения.

2. Современная станция должна иметь:

· высокий КПД во всем диапазоне нагрузок;

· коэффициент мощности (cos I) не ниже 0,75 во всем диапазоне нагрузок;

· коэффициент пульсаций выходного напряжения не более 2%;

· диапазон регулирования по току и напряжению от 0 до 100%;

· легкий, прочный и малогабаритный корпус;

· модульный принцип построения, т.е. иметь высокую ремонтопригодность;

Остальные требования к станциям катодной защиты, такие как защита от перегрузок и коротких замыканий; автоматическое поддержание заданного тока нагрузки – и прочие требования, являются общепринятыми и обязательными для всех СКЗ.

В заключении предлагаем потребителям таблицу сравнения параметров основных выпускаемых и применяемых сейчас станций катодной защиты. Для удобства в таблице представлены станции одинаковой мощности, хотя многие производители могут предложить целую гамму выпускаемых станций.

Решение для комплексной защиты от перенапряжений системы катодной защиты трубопровода

Катодная защита трубопровода – современный и весьма популярный метод борьбы с коррозией трубопровода. Сегодня станции катодной защиты (СКЗ) не только блестяще выполняют свои прямые функции, но и позволяют проводить мониторинг состояния трубопровода, осуществлять дистанционное управление и настройку системы. Для обеспечения всех этих возможностей применяется дорогостоящее контрольно-измерительное оборудование, от бесперебойной работы которого зависит целостность станций катодной защиты и всего трубопровода.

Чтобы максимально обезопасить столь чувствительное оборудование от таких внешних воздействий, как атмосферные (грозовые) и промышленные перенапряжения, мы предлагаем уникальное комплексное решение.

Наш комплекс учитывает все возможные пути проникновения перенапряжений в систему катодной защиты и состоит из следующих мер:

  • защита низковольтной сети (низковольтное питание);
  • защита слаботочных систем (сети контроля, управления и мониторинга, DC питание анода);
  • защита трубопровода:
    • разрядники уравнивания потенциалов (монтируются на изолирующие фланцы трубопровода);
    • защита от грозовых перенапряжений и наводок промышленной частоты
      (от прилегающих высоковольтных линий и железнодорожных объектов).
Читайте также:
Унитаз подвесной – какой лучше выбрать

Основные преимущества:

  • комплексный подход – учитываем все возможные пути проникновения перенапряжений в систему катодной защиты;
  • универсальные устройства – позволяют совместить в одном корпусе несколько видов защиты; это обеспечивает компактность размещения и экономию средств;
  • уникальные характеристики – наши устройства ограничивают перенапряжения до максимально безопасных уровней;
  • удобство – понимая сложность организации защиты трубопровода большой протяженностью, мы предлагаем систему, оснащенную функцией дистанционного контроля, не требующую технического обслуживания и имеющую долгий срок службы.

Защита трубопровода от грозовых перенапряжений и наводок промышленной частоты

Часто случается, что трубопровод находится в непосредственной близости от линий электропередачи или от железной дороги. Обе системы оказывают негативное влияние на систему катодной защиты, поскольку индуцируют в ней вредоносное напряжение переменного тока, подчас превышающее напряжение питания СКЗ.

В сотрудничестве с компанией SWISSGAS (Швейцария) разработано устройствоLEUTRON PLPro (PipeLineProtection). Оно обеспечивает отвод индуцированных переменных токов, тем самым гарантирует защиту от этого вида угрозы.

Кроме того, PLPro включает в себя защиту от прямого воздействия молнии. Специальный газонаполненный разрядник способен отвести ток до 100 кА (10/350 мкс).

А так как PLPro не требует технического обслуживания, инвестиции в его установку очень быстро себя окупают.

Тип Номинальный отводимый ток (50 Гц) Артикул

PLPro-40A
40 A LE-550-440

PLPro-80A
80 A LE-550-441

Защита сети низковольтного питания

Комбинированное УЗИП класса 1+2+3 является оптимальным выбором для защиты СКЗ со стороны питания. Оно совмещает в себе сразу 3 класса защиты : обеспечивает уровень защиты менее 1000 В и устойчиво к молниевым токам до 100 кА (10/350 мкс) . УЗИП класса 1+2+3 может быть установлено в 1 и 3-фазных цепях, в системах TN-C, TN-S, TT. Возможно так же однополюсное исполнение – для защиты отдельных рабочих проводов (L, N).

Разрядники уравнивания потенциалов

Сертифицированные взрывобезопасные искровые разрядники TC 100 A и TC 500 Aоснащены запатентованной новейшей системой fail-safe (безопасность пользователя и системы в случае повреждения разрядника) и соответствуют самым строгим мировым стандартам (имеют маркировку взрывозащиты Ex в соответствии с директивой ATEX).

Тип Статическое напряжение срабатывания Артикул

TC 100
100±20% В LE-487-830

TC 500
500±15% В LE-487-850

Защита слаботочных систем

Для применения в слаботочных системах СКЗ разработаны специализированные серии устройств EnerPro (защита DC питания анода) и DataPro (защита сигнальных линий) , устойчивых к импульсным токам до 40 кА (8/20 мкс) . Данное условие является необходимым требованием для защитных устройств, применяемых в системе катодной защиты.

Индивидуальный подбор

В случае, если Ваша система катодной защиты обладает нетипичными характеристиками или имеет уникальные параметры, Вы всегда можете обратиться в наш технический центр.

Обширная номенклатура предлагаемых нами УЗИП позволяет нам подобрать индивидуальный комплекс защиты, удовлетворяющий всем требованиям надежности и эффективности.

УЗИП для применения в сетях питания и контроля

Уникальное комбинированное УЗИП с очень низким напряжением ограничения, предназначено для применения в трехфазных сетях с режимом нейтрали TN-S (TN-C-S) напряжением 220/380 В, 50 Гц., 50 Гц.

LE-373-960
Максимальный импульсный ток молнии (10/350 мкс) 100 кА
Напряжение ограничения Up
(не более):
1,0 кВ
Максимальное рабочее напряжение: 255 В

Защита от перенапряжения для линий питания постоянного тока с рабочим напряжением до 65 В.

  • Высокая эффективность защиты от перенапряжений;
  • 3-ступенчатая защита от импульсных перенапряжений включает в себя газонаполненные разрядники (GDT) и варисторы (MOV);
  • монтируется на DIN рейку;
  • дополнительный встроенный термодатчик и дистанционная сигнализация состояния (/FM).
LE-296-000
Номинальный импульсный ток (8/20 мкс): 20 кА
Максимальный импульсный ток (8/20 мкс): 40 кА
Максимальное рабочее напряжение (DC): 65 В

Защита от перенапряжений для электронного оборудования с рабочим напряжением 50 В DC. Выдерживает импульсный ток 20 кА (8 / 20 мкс). Устройство предназначено для чувствительной электроники.

  • Высокая эффективность защиты от перенапряжений;
  • защита для сигнальных и информационных линий;
  • максимальный номинальный ток 100 мА;
  • монтрируется на DIN рейку;
  • включает низкочастотный фильтр.
LE-287-050
Максимальный рабочее напряжение (DC): 50 В
Номинальный ток: 100 мА

УЗИП для защиты трубопровода

  • Выполнен из высококачественной промышленной керамики;
  • разрядник заполнен инертным газом, герметично изолирован;
  • очень низкое напряжение пробоя;
  • высокая устойчивость к молниевым токам: 100 кА (10/350μs);
  • двухуровневая система отказоустойчивости (fail-safe) для обеспечения максимальной безопасности;
  • TC 100 A/K1 (включает кабель для подключения)
LE-487-830
Тип: TC 100 А
Статическое напряжение срабатывания: 100±20% В
Импульсный ток (8/20): 100 кА
Импульсный ток (10/350): 75 кА
LE-487-850
Тип: TC 500 А
Статическое напряжение срабатывания: 500±15% В
Импульсный ток (8/20): 100 кА
Импульсный ток (10/350): 75 кА

  • Номинальное отводимый ток от 40А ;
  • включает защиту от прямого воздействия молнии до 100 кА (10/350 мкс);
  • устойчив к высоким значениям блуждающих токов;
  • высокая надежность и длительный срок службы;
  • необслуживаемый, нет токов утечки.
LE-550-440
Тип: PLPro-40A
Номинальное напряжение: 18 В
Номинальный отводимый ток: 40 А
Отводимый импульсный ток (10/350 мкс): 100 кА
LE-550-441
Тип: PLPro-80A
Номинальное напряжение: 18 В
Номинальный отводимый ток: 80 А
Отводимый импульсный ток (10/350 мкс): 100 кА

Купить

Ознакомиться с действующими ценами и приобрести необходимые устройства для защиты от импульсных перенапряжений можно в удобном интернет-магазине на отдельной странице “Купить”.

Строительная экспертиза: кто и когда определяет качество строительных работ

belchonock / Depositphotos.com

Если свечки из бетона и стекла зажигаются в городском пространстве, значит, это кому-нибудь нужно. В I квартале 2020 года в эксплуатацию ввели 198,9 тыс. квартир в многоквартирных и жилых домах общей площадью 15,4 млн кв. метров. Все эти квадраты рано или поздно будут заселены счастливыми (будем надеяться) новоселами. От надежды на счастье до гарантии путь непростой, но реальный.

Обрести домашний уют, к примеру, поможет уверенность в том, что квартира отвечает всем строительным стандартам. Проще говоря: под окнами ветер не гуляет, стены на вас не косятся, а пол не улыбается трещинами. Кто может в этом помочь? Например, строительный эксперт, знания и опыт которого поможет удостовериться в качестве строительного объекта и оценить его на соответствие техническим нормам и ГОСТам.

Что такое строительная экспертиза? Когда заключение эксперта-строителя может понадобится в суде? На какие вопросы отвечают эксперты?

Что такое строительная экспертиза?

Строительная экспертиза – это вид судебных инженерно-технических экспертиз, процессуальное действие, которое состоит из двух этапов: исследования строительного объекта и подготовка заключения по поставленным компетентными органами вопросам. База исследования – научные знания и практические наблюдения высококвалифицированных специалистов в строительной сфере.

Чаще всего строительная экспертиза является одним из способов решить конфликт между застройщиком и заказчиком. Заказчик хочет убедиться, что выполненные застройщиком строительно-монтажные работы проведены полностью и с соблюдением всех стандартов. Сам он не обладает необходимыми знаниями, зато строительный эксперт – да. Выводы эксперта могут стать существенным подспорьем для разбирательства в суде.

Когда строительная экспертиза переходит в категорию судебной строительной экспертизы?

Во время передачи дела сторонами на рассмотрение в судебном порядке. В арбитражных, гражданских и административных процессах проведение экспертизы назначает суд, а в уголовном деле – следователь.

Когда назначают строительную экспертизу?

В случаях, когда для расследования и судебного рассмотрения уголовных и гражданских дел требуются специальные знания в области проектирования, строительства, эксплуатации и ремонта зданий и сооружений.

Заказать строительную экспертизу может заинтересованная сторона (истец, ответчик) или прокуратура. Инициировать исследования может также суд.

Необходимость использовать специальные знания возникают:

  • при разрешении споров о праве собственности на недвижимость;
  • при рассмотрении споров, вытекающих из договоров строительного подряда;
  • для определения видов, объема, качества и стоимости выполненных строительных работ, возводимых и эксплуатируемых зданий, строений и сооружений;
  • в расследовании дел об административных правонарушениях, связанных с установлением правильности и правомерности строительства, эксплуатации строительных объектов;
  • в установлении причин и величины материального ущерба, нанесенного жилым зданиям, квартирам вследствие ненадлежащего ведения строительства или эксплуатации инженерных систем;
  • в расследовании и судебном разбирательстве уголовных дел о несчастных случаях, авариях и разрушениях в строительстве;
  • для установления соответствия требованиям специальных норм и правил, регламентирующих процессы проектирования, возведения, эксплуатации, реконструкции (ремонта), демонтажа и утилизации строительных объектов.

Что является объектом строительной экспертизы?

Практически любое строительное сооружение, а также незавершенные строительные объекты, дворовые территории, инженерные коммуникации, проектная, и исполнительная документация, сметы.

  • качество проведенных работ: выявление брака, дефектов и нарушений, прогнозирование их возможных последствий;
  • соответствие ГОСТам, пожарным, экологическим, санитарно-эпидемиологическим нормам, пунктам заключенного между сторонами договора;
  • степень износа здания;
  • величину ущерба, нанесенного заливом, пожаром с фиксацией объемов и расчетом стоимости восстановления;
  • правильность проведения перепланировки здания, включая надстройку и углубление подвальной части;
  • причины протечки крыши, образования плесни на конструкциях;
  • причины аварий в инженерных коммуникациях.

Эксперт также может провести геодезический мониторинг деформаций, контрольный обмер помещений, исследование несущих конструкций и др.

Какими компетенциями должен обладать эксперт?

Основное требование к эксперту – наличие высшего образования со специальностью (специальные знания), соответствующей профилю выполняемой экспертизы (ст. 13 Федерального закона от 31 мая 2001 г. № 73-ФЗ “О государственной судебно-экспертной деятельности в Российской Федерации”).

Строительную экспертизу должен проводить профессионал с высшим образованием “инженер-строитель”. Свое образование он должен подтвердить дипломом (не справкой, не удостоверением, не сертификатом).

Строительный эксперт должен обладать навыками проведения инструментальных исследований. В процессе исследования он может проводить замеры, ультразвуковую дефектоскопию, телевизионную оценку, работать с образцами, взятыми на объекте, в лаборатории.

Перед инструментальными измерениями эксперт проводит визуальное обследование здания:

  • осмотр и выявление видимых дефектов и повреждений здания;
  • фотофиксацию выявленных дефектов.

Должна ли быть лицензия у строительного эксперта?

В соответствии с требованиями Федерального закона Российской Федерации от 4 мая 2011 г. № 99-ФЗ “О лицензировании отдельных видов деятельности” аналитическая, исследовательская, экспертная деятельность не лицензируется, так как такая деятельность отсутствует в Перечне видов деятельности, на которые требуются лицензии” (ст. 12 вышеуказанного закона).

Какие вопросы задают экспертам?

Правильная и корректная постановка вопроса эксперту – краеугольный камень в эффективном исследовании и последующих выводах.

Формулировки могут быть, например, такими:

  • Каково техническое состояние конструктивных элементов, установить категорию технического состояния многоквартирного жилого дома?
  • Является ли многоквартирный жилой дом аварийным?
  • Каков процент износа жилого многоквартирного дома?
  • Возможно ли дальнейшее проживание в данном жилом доме, не создает ли это опасность для окружающих и для проживающих в данном жилом доме?

Какими нормативными документами в основном пользуются строительные эксперты?

Как правило, это технические нормативные документы:

  • СП 13-102-2003. Правила обследования несущих конструкций зданий и сооружений;
  • ГОСТ 31937-2011. Здания и сооружения. Правила обследования и мониторинга технического состояния;
  • МДС 13-20.2004. Комплексная методика по обследованию и энергоаудиту реконструируемых зданий. Пособие по проектированию;
  • МРР 2.2.07-98. Методика обследования зданий и сооружений при их реконструкции и перепланировке и др.

А из чего состоит заключение эксперта?

Вводная часть заключения эксперта содержит сведения о времени и месте производства экспертизы, об основании для ее производства, сведения об экспертном учреждении или об эксперте, вопросы, поставленные в начале процедур, и сведения об участниках экспертизы.

Основная часть состоит из:

  • описания объекта исследования;
  • описание методов экспертизы;
  • технической части: расчеты, результаты поверочных и обмерных работ, протоколы испытаний;
  • графической части: материалы фотофиксации и рабочие чертежи, с нанесенными на них отметками;
  • дефектной ведомости: список всех повреждений здания или сооружения и объем ремонтных работ по их устранению;
  • выводов эксперта и рекомендации по устранению дефектов.

Справка о компании:

Автономная некоммерческая организация “Научно-исследовательский институт экспертиз”

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: