ТОЭ для чайников: основы электротехники для начинающих, меры безопасности

Пособие для начинающих электриков: описание дисциплины ТОЭ — «Теоретические основы электротехники»

  1. Электротехника — важная наука
  2. Описание дисциплины «Теоретические основы электротехники»
  3. Советы по изучению электричества для чайников

В повседневной жизни мы постоянно имеем дело с электричеством. Без движущихся заряженных частиц невозможно функционирование используемых нами приборов и устройств. И чтобы в полной мере наслаждаться этими достижениями цивилизации и обеспечивать их долговременную службу, надо знать и понимать принцип работы.

Электротехника — важная наука

На вопросы, связанные с получением и использованием энергии тока в практических целях, отвечает электротехника. Однако, описать доступным языком невидимый нам мир, где царствуют ток и напряжение, совсем непросто. Поэтому неизменным спросом пользуются пособия «Электричество для чайников» или «Электротехника для начинающих».

Что же изучает эта загадочная наука, какие знания и умения можно получить в результате её освоения?

Описание дисциплины «Теоретические основы электротехники»

В зачётках студентов, получающих технические специальности, можно увидеть загадочную аббревиатуру «ТОЭ». Это как раз и есть нужная нам наука.

Датой рождения электротехники можно считать период начала XIX века, когда был изобретён первый источник постоянного тока. Матерью «новорождённой» отрасли знаний стала физика. Последующие открытия в области электричества и магнетизма обогатили эту науку новыми фактами и понятиями, имевшими важное практическое значение.

Свой современный вид, как самостоятельная отрасль, она приняла в конце XIX века, и с тех пор входит в учебную программу технических ВУЗов и активно взаимодействует с другими дисциплинами. Так, для успешного изучения электротехники необходимо иметь теоретический багаж знаний из школьного курса физики, химии и математики. В свою очередь, на ТОЭ базируются такие важные дисциплины, как:

  • электроника и радиоэлектроника;
  • электромеханика;
  • энергетика, светотехника и др.

Центральным объектом внимания электротехники является, конечно, ток и его характеристики. Далее теория рассказывает об электромагнитных полях, их свойствах и практическом применении. В заключительной части дисциплины освещаются устройства, в которых трудятся энергичные электрончики. Осиливший эту науку многое поймёт в окружающем мире.

Каково значение электротехники в наше время? Без знания данной дисциплины нельзя обойтись электротехническим работникам:

  • электрику;
  • монтёру;
  • энергетику.

Вездесущность электричества делает его изучение необходимым и простому обывателю, чтобы быть грамотным человеком и уметь применять свои знания в повседневной жизни.

Советы по изучению электричества для чайников

Сложно понять то, чего не можешь увидеть и «пощупать». Большинство учебников по электрике пестрят малопонятными терминами и громоздкими схемами. Поэтому благие намерения начинающих изучить эту науку часто так и остаются лишь планами.

На самом деле электротехника — очень интересная наука, а основные положения электричества можно изложить доступным языком для чайников. Если подойти к образовательному процессу творчески и с должным усердием, многое станет понятным и увлекательным. Вот несколько полезных рекомендаций по изучению электрики для «чайников».

Путешествие в мир электронов нужно начать с изучения теоретических основ — понятий и законов. Приобретите обучающее пособие, например, «Электротехника для чайников», которое будет написано понятным для вас языком либо несколько таких учебников. Наличие наглядных примеров и исторических фактов разнообразят процесс обучения и помогут лучше усвоить знания. Проверить успеваемость можно с помощью различных тестов, заданий и экзаменационных вопросов. Вернитесь ещё раз к тем параграфам, в которых допустили ошибки при проверке.

Если уверены, что полностью изучили физический раздел дисциплины, можно переходить к более сложному материалу — описанию электрических схем и устройств.

Чувствуете себе достаточно «подкованным» в теории? Пришла пора вырабатывать практические навыки. Материалы для создания простейших схем и механизмов можно легко найти в магазинах электрических и хозяйственных товаров. Однако, не спешите сразу приступать к моделированию — выучите сначала раздел «электробезопасность», чтобы не причинить вреда своему здоровью.

Чтобы получить практическую пользу от новообретенных знаний, попробуйте отремонтировать вышедшую из строя бытовую технику. Обязательно изучите требования по эксплуатации, следуйте положениям инструкции или пригласите к себе в напарники опытного электрика. Время экспериментов ещё не пришло, а с электричеством шутки плохи.

Старайтесь, не спешите, будьте пытливы и усидчивы, изучайте все доступные материалы и тогда из «тёмной лошадки» электрический ток превратится в доброго и верного друга для вас. И, может быть, вы даже сможете сделать важное открытие в области электрики и в одночасье стать богатым и знаменитым.

Электроника для всех

Блог о электронике

Основы на пальцах. Часть 1

Ток, напряжение, сопротивление.

Канализация как пример цепи

Если сравнить электроцепь с канализацией, то источник питания это сливной бачок, текущая вода – ток, давление воды-напряжение, а несущееся по трубам говнище – полезная нагрузка. Чем выше сливной бачок, тем больше потенциальная энергия воды, находящейся в нем, и тем сильней будет напор-ток проходящий по трубам, а значит больше дерьма-нагрузки он сможет смыть.
Кроме текущего дерьма, потоку препятствует трение о стенки труб, образуя потери. Чем толще трубы тем меньше потери (гы гы гы теперь ты помнимаешь почему аудиофилы для своей мощной акустики берут провода потолще ;) ).
Итак, подведем итог. Электроцепь содержит источник, создающий между своими полюсами разность потенциалов – напряжение. Под действием этого напряжения ток устремляется через нагрузку туда, где потенциал ниже. Движению тока препятствует сопротивление, образуемое из полезной нагрузки и потерь. В результате напряжение-давление ослабевает тем сильней, чем больше сопротивление. Ну, а теперь, положим нашу канализацию в математическое русло.

Для примера просчитаем простейшую цепь, состоящую из трех сопротивлений и одного источника. Схему я буду рисовать не так как принято в учебниках по ТОЭ, а ближе к реальной принципиальной схеме, где принимают точку нулевого потенциала – корпус, обычно равный минусу питания, а плюс считают точкой с потенциалом равным напряжению питания. Для начала считаем, что напряжение и сопротивления у нас известны, а значит нам нужно найти ток. Сложим все сопротивления (о правилах сложения сопротивлений читай на врезке), дабы получить общую нагрузку и поделим напряжение на получившийся результат – ток найден! А теперь посмотрим как распределяется напряжение на каждом из сопротивлений. Выворачиваем закон Ома наизнанку и начинаем вычислять. U=I*R поскольку ток в цепи един для всех последовательных сопротивлений, то он будет постоянен, а вот сопротивления разные. Итогом стало то, что Uисточника = U1 +U2 +U3. Исходя из этого принципа можно, например, соединить последовательно 50 лампочек рассчитанных на 4.5 вольта и спокойно запитать от розетки в 220 вольт – ни одна лампочка не перегорит. А что будет если в эту связку, в серединку, всандалить одно здоровенное сопротивление, скажем на КилоОм, а два других взять поменьше – на один Ом? А из расчетов станет ясно, что почти все напряжение выпадет на этом большом сопротивлении.

Читайте также:
Шкафы для белья (41 фото): бельевой шкаф с полками и ящиками, мебель для одежды с выдвижными корзинами

Закон Кирхгоффа.

Закон Кирхгоффа на примере

Согласно этому закону сумма токов вошедших и вышедших из узела равна нулю, причем токи втекающие в узел принято обозначать с плюсом, а вытекающие с минусом. По аналогии с нашей канализацией – вода из одной мощной трубы разбегается по кучи мелких. Данное правило позволяет вычислять примерный потребляемый ток, что иногда бывает просто необходимо при расчете принципиальных схем.

Мощность и потери
Мощность которая расходуется в цепи выражается как произведение напряжения на ток.
Р = U * I
Потому чем больше ток или напряжение, тем больше мощность. Т.к. резистор (или провода) не выполняет какой либо полезной нагрузки, то мощность, выпадающая него это потери в чистом виде. В данном случае мощность можно через закон ома выразить так:
P= R * I 2

Как видишь, увеличение сопротивления вызывает увеличение мощности расходующееся на потери, а если возрастает ток, то потери увеличиваются в квадратичной зависимости. В резисторе вся моща уходит в нагрев. По этой же причине, кстати, аккумуляторы нагреваются при работе – у них тоже есть внутреннее сопротивление, на котором и происходит рассеяние части энергии.
Вот для чего аудиофилы для своих сверхмощных звуковых систем берут толстенные медные провода с минимальным сопротивлением, чтобы снизить потери мощности, так как токи там бывают немалые.

Есть закон полного тока в цепи, правда на практике мне он никогда не пригождался, но знать его не помешает, поэтому утяни из сети какой либо учебник по ТОЭ (теоретические основы электротехники) лучше для средних учебных заведений, там все гораздо проще и понятней описано – без ухода в высшую математику.

Спасибо. Вы потрясающие! Всего за месяц мы собрали нужную сумму в 500000 на хоккейную коробку для детского дома Аистенок. Из которых 125000+ было от вас, читателей EasyElectronics. Были даже переводы на 25000+ и просто поток платежей на 251 рубль. Это невероятно круто. Сейчас идет заключение договора и подготовка к строительству!

А я встрял на три года, как минимум, ежемесячной пахоты над статьями :)))))))))))) Спасибо вам за такой мощный пинок.

111 thoughts on “Основы на пальцах. Часть 1”

Мой коментарий к сожалению не по теме статьи, да и вообще не стоит его тут размещать. Я пишу сюда просто потому что я нигде не нашел какой бы то ни было контактной информации. Вам не кажется что это так не должно быть? В общем, я бы хотел выразить общее впечатление от сайта и указать на его недостатки. А недостотаки есть. В общем сайт то действительно здоровский, да и дизайн хороший, но только если издалека смотреть. Возможно я бы лучше и не сделал, но дизайн выглядит сырым. Серьезно. Я не стану придираться на шрифт названия сайта, потому что она, судя по всему, стилизована специально под какой-то дурацкий шрифт надписей на советской электроннике. Стоит взглянуть в первую очередь на самый низ. В принципе, если просто сделать красиво облако тегов, то у меня пропадут всяческие претензии к дизайну. Облако тегов выглядит просто ужасно. Прям совсем. Ну а потом стоит подумать над целесообразностью использования капса в заголовках, шрифта в меню наверху справа, пунктов RSS и RSS->MAIL.
Вот, что говорит по этому поводу cooloven: «верхнее меню крайне не втему на мой взгляд содержанием ссылок и их порядком, карта сайта да, полный бред… ессно капсы и заголовки тоже». Так что вот.
И все же, если Вы боитесь спама или еще чего такого, то сделайте хотя бы форму специальную, где можно написать что-то в личку. А то сайт какой-то безличный получается.
Я это все написал, потому что мне реально понравился этот сайт и я бы хотел, чтобы он стал лучше. Надеюсь, что никого не обидел.

Облако тэгов делает плагин и мне совершенно влом что либо ковырять. А то что там так сильно все вылазит, так просто теги еще несбалансированно расставляются.

RSS это аббревиатура. Так что пусть будет капс.

Карта сайта нужна из SEO соображений, чтобы поисковики быстрей хавали и страницы не проваливались дальше 3го уровня. Ну и я ей частенько пользуюсь.

Где ты увидел капсы в заголовках?

О каком верхнем меню идет речь? О томе где Главная, о Сайте, Файлы? Так все верно. Там статичные страницы которые всегда должны быть на виду.

Если же по Рубрикатору, то тут надо тему править, причем глобально так. Причем еще неизвестно что главней, поэтмоу сортирвока по алфавиту.

О кнопке добавить комментарий: Все вопросы и претензии к создателям WordPress =))))

А вообще сайт узкотехнической направленности, а потому на дизайн глубоко похую, лишь бы было адекватночитабельно.

Насчет добавления комментариев. Есть плагин http://wordpress.org/extend/plugins/wordpress-thread-comment/ понимает ветки от Brian’s Threaded Comments, аякс, вроде должен отправлять ответы на комментарии(я не стал включать). Но его нужно немного допилить, в изначальной ворме мне сначала не понравился.

И еще у тебя нет ссылок на следующие/предыдущие посты.

[quote]А вообще сайт узкотехнической направленности, а потому на дизайн глубоко похую, лишь бы было адекватночитабельно.[/quote]
Полностью согласен =)

О природе электрического тока и основах электротехники

В данной короткой статье попытаюсь на пальцах объяснить основы электротехники. Для тех, кто не понимает откуда в розетке электричество, но спрашивать вроде как уже неприлично.

Читайте также:
Триммер электрический

1. Что такое электрический ток.
“Главный инженер повернул рубильник, и электрический ток все быстрее и быстрее побежал по проводам” (с)

1.1 Пара общих слов по физике вопроса
Электрический ток – это движение заряженных частиц. Из заряженных частиц у нас имеются электроны и немножко ионы. Ионы – это атомы, которые потеряли или приобрели один или несколько электронов и поэтому потеряли электрическую нейтральность, приобрели электрический заряд. Так-то атом электрически нейтрален – заряд положительно заряженного ядра компенсируется зарядом электронной оболочки. Ионы обычно являются переносчиком заряда в электролитах, в металлических проводах носителями являются электроны. Металлы хорошо проводят ток, потому что некоторые электроны могут перескакивать от одного атому к другому. В непроводящих материалах электроны привязаны к своему атому и перемещаться не могут. (Напомню, данная статья – это объяснение физики на пальцах! Подробнее искать по “электронная теория проводимости”).

Будем рассматривать ток в металлических проводниках, который создаётся электронами. Можно провести аналогию между электронами в проводнике и жидкости в водопроводной трубе. (На начальном этапе электричество так и считали особой жидкостью.) Как через стенки трубы вода не выливается, так и электроны не могут покинуть проводник, потому что положительно заряженные ядра атомов притянут их обратно. Электроны могут перемещаться только в внутри проводника.

1.2 Создание электрического тока.
Но просто так ток в проводнике не возникнет. Это все равно, что залить воду в кусок трубы и заварить с обоих концов. Вода никуда не потечет. В куске проводника электроны тоже не могут двигаться в одном направлении. Если электроны почему-то сдвинутся вправо, то слева возникнет нескомпенсированный положительный заряд, который потянет их обратно. Поэтому электроны могут только прыгать от одного атома к другому и обратно. Но если трубу свернуть в кольцо, то вода уже может течь вдоль трубы, если каким-то образом заставить ее двигаться. Точно также и концы проводника можно соединить друг с другом, и тогда электроны смогут перемещаться вдоль проводника, если их заставить. Если концы проводника соединены друг с другом, то получается замкнутая цепь. Постоянный ток может идти только в замкнутой цепи. Если цепь разомкнута, то ток не идет. Чтобы заставить воду течь по трубе используется насос. В электрической цепи роль насоса выполнят батарейка. Батарейка гонит электроны по проводнику и тем самым создает электрический ток. По научному батарейка называется генератором. Так в электротехнике называют насос для создания электрического тока.

Бывают два типа генераторов – генератор напряжения и генератор тока.
Это фундаментальная вещь на самом деле, обратите внимание! См. рисунок ниже

рис 1. Генератор напряжения величиной U

рис 2. Генератор тока величиной I

На верхней картинке изображен генератор напряжения, на нижней – генератор тока. Насос -генератор напряжения создает постоянное давление, насос-генератор тока создает постоянный поток. Верхняя цепь разомкнута, и нижняя – замкнута. Рассмотрим, какими свойствами обладает генератор напряжения. Представим следующую цепь

рис 3. Генератор напряжения величиной U с нагрузкой R1

В терминах водопроводной аналогии, генератор -это насос, создающий постоянное давление, выключатель SW1 – это клапан, открывающийперекрывающий трубу, сопротивление R1 – это кранвентиль который насколько-то приоткрыт. Этот крантель можно прикрыть – сопротивление увеличится, поток воды уменьшится. Можно открыть побольше – сопротивление уменьшится, поток воды увеличится. Вроде все интуитивно понятно. Теперь представим, что мы открываем кран все больше и больше. Тогда поток воды будет увеличиваться и увеличиваться. При этом генератор напряжения по определению поддерживает напряжение (давление) постоянным, независимо от величины потока! Если кран открыть полностью и сопротивление станет равно 0, то поток станет равным бесконечности. При этом генератор все равно будет выдавать напряжение равное U! Конечно все это происходит в идеальной модели, когда мощность генератора бесконечна. Реальные генераторы (батарейки или аккумуляторы) примерно соответствуют этой модели в определенном диапазоне напряжений и токов.

Рассмотрим теперь цепь с генератором тока.

рис 4. Генератор тока величиной I с нагрузкой R2

Что делает генератор тока? Он гонит ток! Ему сказано гнать ток величиной I, и он его гонит, невзирая на величину сопротивления (насколько открыт кран). Открыт кран полностью – ток будет равен I. Напряжение (давление) будет равно.
Закрыт кран полностью – ток все равно будет равен I! Но при этом напряжение (давление) будет равно бесконечности. Опять таки в модели.
Из этих рассуждений интуитивно понятно вытекает основной закон электротехники – Закон Ома. ( “С красной строки. Подчеркни” (с))

2. Закон Ома.

Сначала c точки зрения генератора напряжения

Если к сопротивлению R приложить напряжение U, то через сопротивление пойдет ток
I =U/R
Теперь с точки зрения генератора тока

Если через сопротивление R пропускать ток I, то на сопротивлении возникнет падение напряжения U=I*R

Вот как-то надо этот момент осознать. Эти две формулировки совершенно равноправны и применение их зависит только от того, какой генератор рассматривается. Можно конечно еще записать R=U/I. Что-то вроде – если к участку цепи приложено напряжение U, и при этом в этом участке проходит ток I, то цепь имеет сопротивление R. Дальше по хорошему надо рассматривать варианты цепей с параллельным или последовательным включением резисторов, но неохота. Это чисто технические моменты. Что-то вроде

рис 5. Последовательное включение резисторов

Через данную цепь из последовательно соединенных резисторов R1 и R2 проходит ток величиной I. Какое падение напряжения будет на каждом резисторе U1 и U2?
Используйте закон Ома и все!
Эта цепь кстати с генератором тока, поскольку входная переменная здесь ток. Ну то есть самого генератора тока может и не быть, просто ток в цепи известен и считается постоянным и равным I. Поэтому как бы этот ток гонит генератор тока.
Еще – говорят “падение напряжения на резисторе”, потому что “производит” напряжение (давление) генератор, а после каждого резистора напряжение будет уменьшаться, падать на этом резисторе на величину U=I*R.

Читайте также:
Чем отмыть силиконовую форму для выпечки

Хотя пару важных практических случаев все таки рассмотрим.

1. Самая важная схема.
Самая важная схема, с которой инженеру-электронщику предстоит иметь дело постоянно на протяжении всей жизни – это делитель напряжения.
( “С красной строки. Подчеркни” (с))

3. Делитель напряжения
Схема имеет вид.

рис 6. Делитель напряжения

Делитель напряжения представляет собой два резистора, соединенных последовательно друг с другом.

Кстати, резистором называется электронный компонент (деталька), которая реализует электрическое сопротивление определенной величины . Его также (детальку) часто называют сопротивлением. Получается немного тавтология – сопротивление имеет сопротивление R. Поэтому для деталей лучше использовать название резистор. Резистор сопротивлением 1 килоом, например.

Так вот. Что же делает эта схема? Два последовательных резистора имеют некоторое эквивалентное сопротивление, назовем его R12. По цепи проходит ток I, от плюса генератора к минусу через резистор R1 и через резистор R2. При этом на резисторе R1 падает напряжение U1=I*R1, а на резисторе R2 падает напряжение U2=I*R2. Согласно закону Ома. Напряжение U=U1+U2, как видно из схемы. Таким образом U=I*R1+I*R2=I*(R1+R2).
То есть эквивалентное сопротивление последовательно соединенных резисторов равно сумме их сопротивлений.
Выражение для тока I=U/(R1+R2)
Найдем теперь, чему равно напряжение U2. U2=I*R2= U* R2/(R1+R2).

Пример картинки из интернета. Если резисторы равны, то входное напряжение Uвx делится пополам.

Второй важный случай – учет выходного сопротивления источника (генератора) и входного сопротивления приемника (цепи, к которой генератор подключен)

рис 7. Выходное сопротивление источника и входное сопротивление приемника.

Идеальный генератор напряжения имеет нулевое выходное сопротивление, то есть при нулевом сопротивлении внешней цепи величина тока будет равна бесконечности ∝. Реальный генератор напряжения обеспечить бесконечный ток не может. Поэтому при замыкании внешней цепи ток в ней будет ограничен внутренним сопротивлением генератора, на рис. обозначен буквой r.

Кстати, правильный способ проверки пальчиковых батареек, заключается в измерении тока, которые они могут отдать. То есть на тестере выставляется предел 10А, режим измерения тока, и щупы прикладываются к контактам батареи. Ток в районе 1А или больше говорит о том, что батарейка свежая. Если ток меньше 0.5А, то можно выкидывать. Или попробовать в настенных часах, может сколько-то проработает.

Если выходное сопротивление источника (внутреннее сопротивление r на рисунке) соизмеримо со входным сопротивлением приемника (R3 на рисунке), то эти резисторы будут действовать, как делитель напряжения. На приемник при этом будет поступать не полное напряжение источника U, а U1=U*R3/(r+R3). Если эта схема предназначена для измерения напряжения U, то она будет врать!

В следующих статьях планируется рассмотреть цепи с конденсаторами и индуктивностями.
Затем диоды, транзисторы и операционные усилители.

Основы теоретической электротехники для начинающих

Понятие электричества

Все вещества состоят из молекул, которые, в свою очередь, состоят из атомов. У атома есть ядро и движущиеся вокруг него положительно и отрицательно заряженные частицы (протоны и электроны). При нахождении двух материалов рядом друг с другом между ними возникает разность потенциалов (у атомов одного вещества электронов всегда меньше, чем у другого), что приводит к появлению электрического заряда – электроны начинают перемещаться от одного материала к другому. Так возникает электричество. Другими словами, электричество – это энергия, возникающая в результате перемещения отрицательно заряженных частиц из одного вещества в другое.

Что такое электричество

Скорость перемещения может быть разной. Чтобы движение было в нужном направлении и с нужной скоростью, используются проводники. Если движение электронов по проводнику осуществляется только в одном направлении, такой ток называется постоянным. Если же направление перемещения с определенной частотой меняется, то ток будет переменным. Самым известным и простым источником постоянного тока является батарейка или автомобильный аккумулятор. Переменный ток активно используется в бытовом хозяйстве и в промышленности. На нем работают практически все устройства и оборудование.

К сведению. Движением электрической энергии можно управлять. Способы такого управления изучает курс «Основы электротехники», который необходим всем электрикам, чтобы правильно проложить проводку в доме, не допустить пожара или травм в период работ.

Чем отличется однофазное напряжение от трёхфазного

Чем отличается трёхфазное и однофазное напряжение, от какой сети питаются наши дома и квартиры, и какие особенности есть у трёхфазной системы электроснабжения.

Информационный проект для работников энергетических служб и студентов электротехнических вузов

Основные способы проверки исправности стабилитрона

Несколько работающих способов, как проверить стабилитрон на исправность. Технология проверки стабилитрона мультиметром, транзистор-тестером и другими приборами.

Наука электротехника

В физике электротехника изучает все понятия, связанные с электричеством. Её проходят все, кто хочет получить специальность электрика. В учебных заведениях дисциплина называется «ТОЭ» — теоретические основы электротехники. Впервые об этой науке узнали в XIX веке, когда был изобретён источник тока и построены электрические цепи. Затем учёные сделали несколько физических открытий, а также в области математики и химии.

На первых занятиях ТОЭ студенты изучают основы электрического тока, его определение, разбираются свойства, сферы использования и характеристики. Затем рассказывают студентам о магнитных полях, приборах, которые получают питание от сети. Необязательно получать специальное образование в институте или колледже. Разобраться с работой электрической проводки можно самостоятельно.

Достаточно изучить сайты по электротехнике, несколько учебников или посмотреть видеоуроки. В быту этих знаний хватит для замены лампы в светильнике или ремонта электрического чайника. Но если есть желание профессионально работать с током, то необходимо получить специальное образование. Диплом позволит получить официальный допуск к таким занятиям.

Почему гудит трансформатор: основные причины и способы устранения

Почему может гудеть трансформатор в колонках, блоке питания, микроволновке, усилителе и других устройствах, а также что делать в такой ситуации. Причины повышенного шума при работе.

Видео

(function(w, d, n, s, t) < w[n] = w[n] || []; w[n].push(function() < Ya.Context.AdvManager.render(< blockId: ‘R-A-263154-214’, renderTo: ‘yandex_rtb_R-A-263154-214’, async: true >); >); t = d.getElementsByTagName(‘script’)[0]; s = d.createElement(‘script’); s.type = ‘text/javascript’; s.src = ‘//an.yandex.ru/system/context.js’; s.async = true; t.parentNode.insertBefore(s, t); >)(this, this.document, ‘yandexContextAsyncCallbacks’);

(function(w, d, n, s, t) < w[n] = w[n] || []; w[n].push(function() < Ya.Context.AdvManager.render(< blockId: ‘R-A-263154-217’, renderTo: ‘yandex_rtb_R-A-263154-217’, async: true >); >); t = d.getElementsByTagName(‘script’)[0]; s = d.createElement(‘script’); s.type = ‘text/javascript’; s.src = ‘//an.yandex.ru/system/context.js’; s.async = true; t.parentNode.insertBefore(s, t); >)(this, this.document, ‘yandexContextAsyncCallbacks’);

Читайте также:
Стабилизатор напряжения для газового котла Baxi, как выбрать стабилизирующий прибор для отопительного устройства Бакси

(adsbygoogle = window.adsbygoogle || []).push(<>);

Применяемые радиодетали

При изучении электрики для «чайников» нужно помнить, что применяются все ранее перечисленные виды материалов. Проводники, в первую очередь, используются для соединения элементов схемы (в том числе в микросхемах). Могут присоединять источник питания к нагрузке (это, например, шнур от холодильника, электропроводка и т. д). Применяются при изготовлении катушек, которые, в свою очередь, могут использоваться в неизменном виде, например, на печатных платах либо в трансформаторах, генераторах, электродвигателях и т. п.

Проводники наиболее многочисленны и многообразны. Почти все радиодетали изготавливаются из них. Для получения варистора, например, может использоваться один полупроводник (карбид кремния или оксид цинка). Есть детали, в состав которых входят проводники разных типов проводимости, например, диоды, стабилитроны, транзисторы.

Особую нишу занимают биметаллы. Это соединение двух или более металлов, у которых разная степень расширения. Когда такая деталь нагревается, то она деформируется, благодаря разному процентному расширению. Обычно используется в токовой защите, например, для защиты электродвигателя от перегрева или отключения прибора по достижению заданной температуры, как в утюге.

Диэлектрики в основном выполняют функцию защиты (например, изоляционные ручки электроинструментов). Также они позволяют изолировать элементы электрической схемы. Печатная плата, на которой крепятся радиодетали, изготавливается из диэлектрика. Провода катушки покрываются изоляционным лаком для предотвращения замыкания между витками.

Проводниковые материалы

Проводниковые материалы (алюминий, медь, золото, серебро и др.) обладают высокой электропроводностью. Наиболее часто в проводах и кабелях используется алюминий, как наиболее дешевый. Медь имеет большую электропроводимость, но она дороже.

Из проводников следует выделить группу материалов с большим удельным сопротивлением. К ним относятся сплавы ( нихром, фехраль и др.) они используются для изготовления обмоток нагревательных приборов и реостатов. Вольфрам используется в лампах накаливания. Константан и манганин используются в качестве сопротивлений в образцовых приборах.

Электроизоляционные материалы (диэлектрики)

Электроизоляционные материалы (диэлектрики) имеют очень малую удельную электрическую проводимость. Они бывают газообразные, жидкие и твердые. Особенно большим разнообразием отличаются твердые диэлектрики. К ним относятся резина, сухое дерево, керамические материалы, пластмассы, картон, пряжа и др. материалы. В качестве конструкционных материалов применяются текстолит и гетинакс. Текстолит это диэлектрический материал основой которого является ткань, пропитанная феноло-формальдегидной смолой. Гетинакс это бумага, пропитанная феноло-формальдегидной смолой.

Как измерить напряжение переменного и постоянного тока

Способы измерения напряжения постоянного и переменного тока. Чем измерять напряжение и как это правильно делать. Примеры измерения напряжения в разных условиях.

Закон электромагнитной индукции

Закон электромагнитной индукции — устанавливает связь между электрическими и магнитными явлениями, был открыт в 1831 году М. Фарадеем, в 1873 году закон был обобщен и развит Д.Максвеллом:

Если магнитный поток Ф, проходящий сквозь поверхность, ограниченную некоторым контуром, изменяется во времени t, в контуре индуцируется ЭДС e, равная скорости изменения потока

Дальше >
Лекции по основам электротехники >

Что такое биполярный транзистор и в чем его особенность

Принцип действия биполярных транзисторов, внутреннее устройство, схемы подключения с общим эмиттером, коллектором или базой. Два основных режима работы.

Что такое электрическая прочность изоляции

Что такое электрическая прочность изоляции и какие бывают виды пробоя. Характеристики электрической прочности газов и силовых кабелей и причины её уменьшения.

Что такое ЭДС — объяснение простыми словами

Что такое ЭДС в физике, химии, электротехнике и как она возникает. Определение понятия и формулы. Отличие ЭДС от напряжения в электрической цепи.

Какие бывают ряды номиналов радиодеталей

Какие бывают ряды номиналов радиодеталей? Типовые величины сопротивления, ёмкости и индуктивности приведены в статье. Таблицы и примеры выбора ряда.

Что такое катушка индуктивности и для чего она нужна

Что такое катушка индуктивности, какой у нее принцип работы и назначение. Основные виды и характеристики катушек, а также варианты маркировки.

Что такое конденсатор и для чего он нужен

Что такое конденсатор, как он устроен и для чего нужен. Принцип работы и область применения конденсаторов разных видов. Характеристики накопителей энергии.

Электроника, электротехника, схемотехника и радиотехника – науки, с которыми обязательно должен быть ознакомлен каждый электрик, в том числе и самоучка. В этом разделе сайта мы будем рассказывать вам об основных законах перечисленных наук, терминах, понятиях. Помимо теории для вас мы предоставили пошаговые инструкции, которые вы сможете применять на практике, например, как выпаивать радиодетали из плат или же какие существуют условные обозначения на электрических схемах.

Используя предоставленную информацию вам станут понятны основы электротехники и электроники, тем более, что инструкции и определения у нас изложены в краткой форме. Если возникнут вопросы по теме, обязательно задавайте их в комментариях к соответствующим статьям или же через форму Вопрос-ответ!

Отдельно рекомендуем пройти тест по электротехнике и элеткронике, который покажет ваш уровень знаний данных дисциплин!

Радиоэлектроника / Основы электроники для чайников

Раздел для начинающих радиолюбителей или как еще у нас любят говорить -«чайников». В основном здесь находится теория и азы по электронике: условные графические обозначения радиоэлементов, теория электротехники, уроки для радиолюбителей и др. Вопросы начинающих радиолюбителей обсуждаются в форуме для начинающих радиолюбителей, там на ваши вопросы постараются ответить грамотные специалисты и участники форума. Не стесняйтесь, задавайте свои вопросы в форуме, форум для этого и существует! Тем более там вы уже сможете найти ответы на многие вопросы!

Азы электроники для чайников

Книга «Электроника для чайников» содержит сотни микросхем и фотографий, позволяющих даже самому далекому от этого дела человеку разобраться в принципах электроники. Подробнейшие советы и инструкции по проведению опытов помогут разобраться, как функционируют те или иные электронные детали. Также материал содержит рекомендации по выбору важнейших инструментов для работы в этой области и их полные описания.

Важно! По мере ознакомления с каждой главой читатель постепенно погружается в предмет, который увлекает его все больше и больше. Теоретические знания закрепляются практикой путем сборки простейших, но интересных устройств.

Читайте также:
ЧПУ станок купить

Книга содержит следующие разделы:

  • «Основы теории электрических цепей», в котором дается определение напряжению, силе тока, проводникам, рассеиваемой мощности.
  • «Компоненты электросхем», где рассказывается о том, как простейшие элементы по типу резисторов, транзисторов, диодов и конденсаторов управляют током и задают его характеристики.
  • «Электрические схемы универсального предназначения». Здесь будет рассказано, как использовать простейшие цифровые и аналоговые схемы в сложных устройствах.
  • «Анализ электрических цепей», который познакомит с основными законами электроники и научит управлять силой тока и напряжением в электрической сети, научит применять эти закономерности на практике.
  • «Техника безопасности и рекомендации по ней». Этот раздел обучит безопасной работе с электрическими цепями и током в целом, поможет защищать себя и свои приборы от поражения током.

Как измерить сопротивление мультиметром

  • черный провод подключите к разъему „COM”;
  • красный провод подключите к разъему » Ω «
  • мы ожидаем получить значение около 22кОм, поэтому установите регулятор на значение 200к в секции Ω и, если это необходимо, включите прибор (некоторые модели включаются при повороте диска), который до измерения должен показать 0;
  • металлическими наконечниками щупов мультиметра коснитесь ножек резистора;
  • смотрим значение – у нас сопротивление составляет 22,1кОм;
  • выключаем мультиметр.

Как и в случае с батарейкой, значение, измеренное мультиметром, отличается от номинального значения тестируемого элемента (резистора). Напомним, что золотая полоска на резисторе (значение цветных полосок смотрите в этой статье) означает допуск 5%, то есть 22кОм x 5% = 1,1кОм

Поэтому диапазон отклонения сопротивления для нашего резистора может быть в пределах от 20,9кОм до 23,1кОм.

Теперь соединим на макетной плате кассету с батарейками и резистор так, как показано на картинке ниже:

В электронике чтобы изобразить связи между отдельными элементами используют принципиальные схемы. В нашем случае схема будет выглядеть следующим образом:

Символ обозначенный как B1 — это наши батарейки, обеспечивающие общее напряжение: 4 х 1,5В = 6В. наш резистор на 22кОм обозначен символом R1. В соответствии с законом Ома:

I = U / R I = 6В / 22кОм I = 6В / 22000 Ом I = 0,000273 А I = 273мкА

Теоретически, ток в схеме должен составлять 273мкА. Вспомним, что сопротивление резистора может отличаться в пределах 5% (у нас это 22,1кОм). Напряжение, поступающее от батареек, также может отличаться от номинальных 6 вольт, и оно будет зависеть от степени разряда этих батареек.

Давайте посмотрим, какое реальное напряжения идет от 4 батареек по 1,5 В.

Начало изучения радиотехники начинающими

Перед тем, как изучать радиотехнику или электронику, нужно понять, зачем именно это нужно человеку. Если это увлечение на пару дней или месяцев, то лучше сразу бросить затею, поскольку, если относиться к электронике халатно и не соблюдать меры предосторожности, можно нанести сильный вред своему организму. Если данная сфера увлекала еще с детства, но не было времени начать заниматься, то сейчас самое время начать. Постепенное погружение подразумевает:

  • Получение или закрепление теоретических знаний физики. Для начала достаточно будет школьных знаний по электрофизике, включающих подробное изучение закона Ома – основы всей электрики.
  • Ознакомление с теорией. От более абстрактных вещей физики следует перейти к более осязаемым. Теория подразумевает точное и полное описание всех понятий, деталей, инструментов и приборов, которые будут использоваться на практике. Садиться и начать что-либо паять без теоретических основ не получится.
  • Применение на практике. Логическое завершение теории, позволяющее закрепить весь изученный материал и применить его при создании конкретных схем или приборов.

Меры безопасности

Однако диэлектрик при добавлении проводника становится полупроводником и может проводить ток. Тот же самый воздух становится проводником во время грозы. Сухое дерево плохо проводит ток, но если его намочить, оно уже не будет безопасным.

Электрический ток играет огромную роль в жизни современного человека, но, с другой стороны, может представлять смертельную опасность. Обнаружить его, например, в проводе, лежащем на земле, очень трудно, для этого нужны специальные приборы и знания. Поэтому при пользовании электрическими приборами нужно соблюдать предельную осторожность.

Человеческое тело состоит преимущественно из воды, но это не дистиллированная вода, которая является диэлектриком. Поэтому для электричества тело становится почти проводником. Получив электрический удар, мышцы сокращаются, что может привести к остановке сердца и дыхания. При дальнейшем действии тока кровь начинает закипать, затем происходит иссушение тела и, наконец, обугливание тканей. Первое, что нужно сделать, — прекратить действие тока, при необходимости оказать первую помощь и вызвать медиков.

В природе образуется статическое напряжение, но оно чаще всего не представляет опасности для человека, за исключением молнии. Зато оно может быть опасно для электронных схем или деталей. Поэтому при работе с микросхемами и полевыми транзисторами пользуются заземленными браслетами.

Напряжение и ток – понятия

Для работы любого электронного компонента требуется наличие электрического тока. Он создается электрическим потенциалом, то есть «напором» частиц. Самого потенциала недостаточно для течения тока. Нужен также проводник, способный пропустить его через себя. Если проводника нет, то потенциал уходит в воздух, который очень хорошо препятствует распространению тока. Объекты, которые останавливают ток, называются диэлектриками, а позволяющие протекать через них – проводниками.

Помимо проводника, для течения тока нужна разность потенциалов, возникающая в цепи. Аналогию можно провести с водопроводной трубой. Если с обеих ее сторон подается одинаковый напор, то каким бы сильным он ни был, вода не будет течь. Разность потенциалов называется напряжением. Оно обозначается буквой «U» и измеряется в вольтах. Сила тока же обозначается «I» и измеряется в амперах.

Важно! По общей договоренности считают, что ток течет от плюса к минусу, но на самом деле это условность. Все дело в том, что отрицательные электроны были открыты уже после этой договоренности. В схемах и на практике никто не вспоминает, откуда и куда течет ток.

Как измерить силу тока мультиметром

  • черный провод подсоедините к разъему „COM”;
  • красный провод подключите к разъему „mA”;
  • мы ожидаем получить значение 294 мкА, поэтому устанавливаем регулятор на значение 2000µ в секции A-, если это необходимо, включите прибор, который должен изначально показать 0;
  • для измерения тока, необходимо мультиметр подключить в разрыв цепи. Металлическими наконечниками щупов мультиметра касаемся, ножки джемпера соединяющий положительный полюс батареи и ножки резистора;
  • считываем значение – у нас сила тока составляет 294 мкA;
  • выключаем мультиметр.
Читайте также:
Советы по созданию в домашних условиях креативной мебели своими руками

И под конец данного урока приведем схему, отражающую различия подключения мультиметра при измерении напряжения и силы тока:

Блок питания 0…30 В / 3A

Набор для сборки регулируемого блока питания…

Источники напряжения и тока

Под источниками часто понимают элементы, которые питают цепь электромагнитной энергией. Эту энергию потребляют пассивные элементы, запасают накопительные и расходуют в активном сопротивлении. Пример источника такой энергии – генератор постоянных, синусоидальных или импульсных сигналов различных форм. Для анализа электронных цепей удобно вводить идеализированные источники тока и напряжения, учитывающие основные свойства реальных источников.

Под источником напряжения понимается элемент цепи, обладающий двумя полюсами. Между этими полюсами образуется напряжение, которое задается некоторыми функциями от времени и не зависит тока в цепи. Этот источник в идеальном состоянии способен отдавать неограниченную мощность. Реальные же источники имеют внутреннее сопротивление, поэтому к ним сопротивление подключается последовательно.

Идеальный источник тока – это элемент цепи, через полюса которого протекает ток с заданной закономерностью изменения во времени. Он не зависит от напряжения между его выводами. Эта независимость означает, что внутренняя проводимость источника равно нулю, а внутреннее сопротивление бесконечно.

Первое знакомство с электричеством

В конце XVIII века французский ученый Шарль Кулон стал активно исследовать электрические и магнитные явления веществ. Именно он открыл закон электрического заряда, который и назвали в честь него, — кулон.

Сегодня известно, что любое вещество состоит из атомов и вращающихся вокруг них электронов по орбитали. Однако в некоторых веществах электроны удерживаются атомами очень крепко, а в других эта связь слабая, что позволяет электронам свободно отрываться от одних атомов и прикрепляться к другим.

Для понимания, что это такое, можно представить большой город с огромным количеством машин, которые движутся без каких-либо правил. Эти машины движутся хаотично и не могут совершать полезную работу. К счастью, электроны не разбиваются, а отскакивают друг от друга, как мячики. Чтобы получить пользу от этих маленьких тружеников, необходимо выполнить три условия:

  1. Атомы вещества должны свободно отдавать свои электроны.
  2. К этому веществу необходимо приложить силу, которая заставит двигаться электроны в одном направлении.
  3. Цепь, по которой движутся заряженные частицы, должна быть замкнутой.

Именно соблюдение этих трех условий и лежит в основе электротехники для начинающих.

Электроника на практике

ПЭ – это раздел электроники, на практике показывающий основные закономерности электричества. Именно в практической части изучается каждый элемент цепи отдельно и применяется на деле в совокупности с другими. С этим названием вышла и книга, в которой можно найти много интересных статей по электротехнике, сформулированных на общедоступном языке.

Материал включает в себя фотографии и опыты, к которым даны полные инструкции. Прочитав его, можно спокойно разбираться во всех электронных и радиотехнических терминах, овладеть пайкой и получить навыки дл чтения простых схем.

Важно! Прошло второе переиздание книги, в котором были отредактированы небольшие ошибки и опечатки, учтены пожелания читателей. Второе издание стало стоящим и полезным учебником для начинающих радиолюбителей.

Формат

Еженедельные занятия будут включать просмотр тематических видео-лекций, изучение текстовых материалов с примерами, иллюстрирующими теоретические положения, выполнение тестовых заданий с анализом ответов и с рекомендациями обучающимся, а также выполнение учебных и контрольных заданий, в которых будет использоваться стандартное приложение для построения и анализа электронных схем. Предусмотрено промежуточное контрольное тестирование по каждому разделу курса и итоговое контрольное тестирование по всему содержанию курса.

Какие еще есть книги для изучения электроники

Помимо двух материалов, которые были рассмотрены в этой статье, есть также множество других. Они, возможно, более придутся по душе читателю. Среди них:

  • Борисов В. Г. «Юный радиолюбитель».
  • Ревич Ю. В. « Занимательная электроника».
  • Хоровиц П., Хилл У. «Искусство схемотехники в трех томах».

Таким образом, практическая электроника не сложна даже для начинающих. Подготовив себя теорией из книг и реализовав все примеры на практике, можно стать настоящим электронщиком.

Микросхемотехника

Радиотехника для начинающих

Это часть микроэлектроники, которая занимается исследованиями и разработкой электрических структурных построений цепей в интегральных микросхемах. Они представляют собой микроэлектронные изделия, выполняющие функции преобразования, обработки сигналов и накопления информации.

Важно! Микросхемы имеют высокую плотность соединённых элементов на площади в несколько мм2. Их элементы не могут быть отделены от кристалла и подложки.


Микросхемотехника

Проектированием и монтажом интегральных микросхем (ИМ) занимаются схемотехники. ИМ бывают нескольких видов:

  • плёночные – все элементы и межэлементные компоненты выполнены в виде плёнок;
  • гибридные – содержат кристаллы;
  • аналоговые – предназначены для обработки сигналов, изменяющихся по закону непрерывной функции;
  • цифровые – обработка сигналов по закону дискретной функции.

Электротехника для начинающих » базовые основы общей электротехники.

Тема: базовые основы общей электротехники, электротехника для новичка.

Прежде чем становится электриком сначала необходимо познать теоретические основы работы электричества. Ведь, чем отличается электрик от обычного человека. А тем, что в силу теории, которая со временем подкрепилась практическим опытом, человек из обычного «незнайки» превращается в опытного электротехника, в полной мере способного разобраться не только в неисправных электрических устройствах, но и которому будет по силам сделать самодельный «девайс». Такому электрику можно поручить любое дело, связанное с его профессией, и он без особых трудностей легко справится с данной задачей.
Электротехника для начинающих представляет собой познавательный путь, постепенно проходя который у человека наращивается профессиональный опыт. Не думайте, что прочитав книгу общей теории электротехники можно сразу научится всё делать. Даже зная «как делать», люди в большинстве случаев, либо боятся начинать (зная об опасности электричества), либо делают настолько неловко и неаккуратно, что в последствии лучше эту работу переделать, для избежания аварийных последствий, связанных с качеством функционирования данного устройства, и потенциальной вероятности слабой электробезопасности.

Читайте также:
Цемент и портландцемент: разница

Основы общей электротехники являются азами, рассказывающие ученику, что и как в общем работает. К примеру, человеку можно дать готовую инструкцию «что и как последовательно делать». Способный человек сможет по этому плану совершить определённую работу, и она будет вполне правильной. Но если такому человеку придётся столкнутся с делом, в котором имеются некоторые ранее неизвестные моменты (внезапно сломалось какое-либо электрическое оборудование и которое необходимо оперативно отремонтировать), то такая ситуация вызовет лёгкий ступор, суетливое поведение, и множество неверных и ошибочных действий (а это потеря времени, сил и нервов).

Электротехника для начинающих, а именно основы общей электротехники должны начинаться с простейших законов физики (раздел электрофикика). Начинающий обязан узнать, что такое вообще электричество, какие его свойства, какую опасность оно несёт в себе, меры защиты и предосторожности и т.д. Знания этого уже даёт общие представления об электрики, как таковой. Знакомя человека сначала с трудными для понимания специальными предметами (к примеру, автоматика, теория сигналов и т.д.) упускается главное, а именно усвоение базовых понятий на образном языке. В голове образуется «каша» из множество раздробленных знаний, что весьма трудно собрать в общую модель работы электричества даже умному.

Немаловажный фактор, сильно влияющий на качество обучения электротехники начинающих, это интерес и практика. Как вы думаете, что лучше усвоится начинающим, «сухая теория», или пошаговое обучение, при котором сначала даётся какое либо теоретическое знание в небольшой дозе, а за ним следует практическое закрепление (примерно как на уроках химии — рассказывали о взаимодействии веществ и показали на наглядном примере как оно работает). Даже собрав простейшую электрическую цепь, состоящую из источника питания, лампочки, переключателя, реостата, измерителей, человек сразу прочувствует что к чему, чем тоже самое просто нарисовать на доске и сухо рассказать о схеме.

Как начать разбираться в электрике: самоучитель с нуля для начинающих электромонтеров

  1. Что изучает электрика
  2. С чего начать обучение
  3. Вуз, техникум, колледж
  4. Курсы
  5. Самообучение
  6. Схемы электрических соединений
  7. Параллельное и последовательное
  8. Теоретические основы электрики
  9. Понятия и свойства электрического тока
  10. Сила тока
  11. Напряжение
  12. Сопротивление
  13. Мощность тока
  14. Энергия и мощность
  15. Пусковой ток
  16. Закон Ома
  17. Трехфазные и однофазные сети
  18. Электропроводящие и изоляционные материалы
  19. Системы автоматической защиты
  20. Выполнение электромонтажных работ
  21. Необходимые инструменты
  22. Удаление виниловой изоляции с проводов (зачистка)
  23. Изоляция
  24. Прокладка проводки
  25. Выбор электрического провода
  26. Провод для заземления
  27. Электротехника и электрическая механика
  28. Техника безопасности
  29. Неисправности электротехники
  30. Рекомендации начинающим

При изучении электротехники новичку придется столкнуться с множеством малопонятных терминов, основных законов и положений. «Электрика для начинающих» помогает ознакомиться с принципами функционирования электрических сетей, научиться правильно работать с проводкой и приборами.

Что изучает электрика

Наука начала стремительно развиваться в XIX в. В то время были открыты первые законы, позволившие понять, что такое электричество. Теоретические основы проверялись на практике. Стали появляться первые электрические приборы, улучшаться средства передачи электроэнергии от источников к потребителям.

Современная наука помогает узнавать все о приборах, работающих с использованием электричества. Благодаря исследованиям создаются более совершенные устройства. Электротехника — наука, ставшая основным двигателем прогресса.

С чего начать обучение

Пособия по электрике «для чайников» присутствуют на информационных порталах. Дефицита таких материалов не наблюдается, поэтому каждый желающий может начать изучать дисциплину с нуля. Однако если человек планирует получить профессию электрика, ему придется поступать на соответствующий факультет высшего или средне-специального учебного заведения.

Вуз, техникум, колледж

Многие учебные учреждения предлагают получить профессиональное образование электрика. Стоит рассмотреть особенности обучения в каждом из них:

  1. Полный курс в ВУЗе длится 4-5 лет. Здесь дается минимальная практическая база. Однако ВУЗы готовят специалистов с хорошими теоретическими знаниями. Учебные заведения принимают выпускников 11-х классов или ССУЗов.
  2. Техникумы дают равное количество теоретических и практических навыков. Обучение направлено на получение рабочей специальности. Поэтому теория изучается менее детально, чем в ВУЗе. Техникумы принимают выпускников 9-х или 11-х классов школы. Обучение длится 4 или 3 года соответственно.
  3. Училище или колледж. Такие заведения подготавливают рабочих, поэтому теоретическая часть сведена к минимуму. Профессию электрика в училище можно получить за 1-3 года.

Курсы

Такие программы помогают освоить базовые навыки за 2-8 недель. Уроки проходят как в стандартном, так и в онлайн-режиме. Недостатком курсов считается малый объем получаемых знаний. Начинающий электрик изучает азы электротехники, осваивает некоторые навыки. Практические занятия обучающийся проводит самостоятельно.

Все курсы ведутся на платной основе, проходить их можно, не оставляя другой работы.

Самообучение

Если описанные способы обучения не подходят, человек может осваивать электротехнику самостоятельно с помощью специальной литературы. Выполнять сложные задачи в таком случае электрик не сможет, однако смонтировать проводку в квартире ему будет под силу. Чтобы стать опытным специалистом с помощью самоучителей, необходимо проходить практику помощником электрика. Ученик должен внимательно следить за действиями наставника, выполнять несложные задания.

Схемы электрических соединений

Существует 2 основных вида цепей, в которых компоненты соединяются параллельно или последовательно. Начинающему электрику стоит изучить принципы их построения и работы.

Параллельное и последовательное

В первом случае электричество разветвляется на все цепи, соединенные друг с другом. Общий ток равен сумме значений в каждой ветке. На соединенные параллельно цепи поступает одинаковое напряжение.

При последовательном построении схемы ток из одной ветки переходит в другую. Через все цепи проходит заряд одинаковой силы.

Теоретические основы электрики

Законы и формулы используются не только при расчетах. Их учитывают при выполнении практических задач. Зная теоретические основы, электрик может быстро выявить и устранить причину неисправности.

Понятия и свойства электрического тока

Электричество представляет собой движение частиц, переносящих заряд. При беспорядочном перемещении свободных электронов подобного не происходит. В перемещении заряда участвуют только упорядоченно движущиеся частицы. Ток всегда протекает направленно. О его присутствии свидетельствуют такие признаки:

  • повышение температуры проводника;
  • силовое воздействие на намагниченные тела;
  • изменение химических свойств проводника.
Читайте также:
Это красиво: окрашивание с помощью ткани

Ток бывает переменным и постоянным. Во втором случае его параметры являются неизменными. Переменный ток периодически меняет полярность от отрицательной к положительной. Это значит, что направление потока частиц становится противоположным. Скорость изменений представляет собой частоту.

Сила тока

При появлении электричества в цепи заряд переносится через сечение проводника. Величина, прошедшая за единицу времени, называется силой тока и выражается в амперах.

Напряжение

Для поддержания движения частиц, переносящих заряд, требуется сила, действующая в нужном направлении. Она называется электрическим полем или напряженностью. Сила вызывает разность потенциалов и стимулирует движение частиц. Для измерения напряжения используется отдельная единица — вольт. Между основными параметрами тока существует зависимость, отраженная в законе Ома.

Сопротивление

Эта величина является характеристикой проводника, связанной с током. Сопротивление, выражаемое в омах, обозначает противодействие материала течению заряженных частиц. Параметр увеличивается по мере уменьшения сечения и роста длины проводника. Под влиянием сопротивления материал нагревается. Величина в 1 Ом возникает при силе тока в 1 А и напряжении 1 В.

Мощность тока

Электрический ток используется для выполнения работы — нагрева батарей, вращения мотора и т. д. Вычислить мощность в ваттах можно, умножив силу тока на напряжение. Например, нагреватель, работающий от сети 220 В, потребляет 2200 Вт. Значит, для его функционирования требуется сила в 10 А. Лампа накаливания 100 Вт потребляет 0,45 А.

Энергия и мощность

Начинающий электромонтер должен научиться разбираться в таких понятиях. Энергия бывает электрической, тепловой, механической или ядерной. Ее невозможно создать или уничтожить. Один вид энергии способен преобразовываться в другой. Например, в бытовых приборах электроэнергия превращается в тепло или звук. Любое устройство потребляет некоторое количество энергии за заданный отрезок времени.

Каждый прибор характеризуется своей величиной, представляющей собой мощность.

Пусковой ток

Нужно различать параметры потребляемого прибором тока при его работе и включении. В последнем случае наблюдается скачок, многократно превышающий эксплуатационные показатели. Поступающий в момент включения ток называется пусковым. Самым большим параметром обладают электродвигатели. Пусковой ток подается до момента набора валом нужной скорости вращения. Подобное характерно для большинства бытовых приборов. Блоки питания снабжаются устройствами, накапливающими энергию для запуска.

Пусковой ток не характерен для маломощных нагревательных элементов. Вычислить параметр, зная мощность прибора, не получится. Устройствам свойственны разные соотношения. Кроме того, современные приборы снабжаются ограничителями пускового тока.

Закон Ома

Сила тока равна напряжению, деленному на сопротивление. Это — основное положение закона Ома. Он действует в отношении постоянного и переменного тока. Через провод сопротивлением 1 Ом под напряжением 1 В проходит ток силой 1 А. Из закона Ома вытекают 2 следствия:

  1. При данных силе тока и сопротивлении можно рассчитать мощность, выделяемую цепью. Для этого квадрат первого параметра умножают на второй.
  2. При данных напряжении и сопротивлении можно рассчитать мощность. При этом квадрат первой величины делят на значение второй.

Трехфазные и однофазные сети

Генераторы на электростанциях вырабатывают 3-фазное напряжение. В таких установках присутствуют катушки индуктивности, размещенные под углом 120°. 3 таких элемента образуют оборот — 360°. Вырабатываемое при вращении магнитное поле индуцирует ток. Один из выводов катушки соединяется с нулевым проводом, второй (фазовый) подводится к потребителям. Получаемое напряжение является синусоидальным. В каждом фазовом проводе оно смещается на 120° относительно соседних элементов.

При измерении напряжения между 2 одинаковыми проводниками у потребителя получается 360 В. Этот параметр между нулем и фазой составляет 220 В. Для питания большинства сетей используется 3-фазное напряжение. Однако в целях экономии к маломощным потребителям подводят 1 фазу и ноль. Подключение выполняют с учетом необходимости равномерного распределения нагрузки. Так образуется 1-фазное бытовое напряжение.

Электропроводящие и изоляционные материалы

Под воздействием тока вещества проявляют разные свойства. Сопротивления начинаются от тысячных долей Ома, заканчиваются миллионами единиц. Материалы с малыми значениями называются проводниками. Диэлектриками или изоляторами называются вещества с высоким сопротивлением. Из проводников изготавливают кабели, клеммы, разъемы, передающие электроэнергию. Из изоляционных материалов производят изделия, препятствующие протеканию тока. Для них характерен эффект пробоя, при подаче предельного напряжения диэлектрик становится проводником.

Часть материалов в природе не относится к группе проводников или изоляторов. Они не используются для доставки электроэнергии или защиты от пробоя.

При отсутствии данных об электропроводности стоит считать материал полупроводником.

Системы автоматической защиты

Электросеть несет 2 вида угроз:

  1. Мощность бытовой проводки достаточна для возгорания материалов, используемых при отделке помещений. Замыкание в сети приводит к неконтролируемому повышению силы тока и воспламенению. Свести вероятность возникновения такой ситуации к нулю невозможно, однако ее снижают путем введения в цепь автоматического выключателя. При повышении параметров тока пластина устройства деформируется, высвобождается пружина, которая размыкает контакты. Автомат не реагирует на импульсы пускового тока.
  2. Нулевой провод связан с землей, фазовый находится под напряжением по отношению к ней. Между таким проводником и заземленными предметами возникает ток. Поражение человека электричеством, образующимся между 2 сетевыми кабелями, практически не опасно. Однако при некоторых условиях прохождения тока электротравма становится смертельной. Автоматические системы защиты следят, чтобы ток входил в один провод и уходил по другому. При появлении напряжения между фазой и заземленным предметом, например, телом человека, УЗО обесточивает сеть.

Выполнение электромонтажных работ

Создание электрических сетей состоит из нескольких этапов:

  • проектирования;
  • подготовки материалов и инструментов;
  • прокладки проводки.

Необходимые инструменты

Для работы потребуются:

  • фазоискатель;
  • плоскогубцы;
  • кусачки;
  • ножи;
  • изоляционная лента;
  • отвертки;
  • мультиметр для проверки сетей.

Удаление виниловой изоляции с проводов (зачистка)

Процедура сопряжена с некоторыми сложностями. Ее нужно проводить так, чтобы не повреждалась токопроводящая жила. Иногда каждый проводник защищается виниловой изоляцией. Набор таких шин помещается в еще одну оплетку. В таком случае нужно разрезать верхний слой, не повреждая внутренней изоляции. Для снятия оплетки используют тупой нож, для зачистки медных или алюминиевых жил — острый.

При разрезании изоляции лезвие вводят на половину толщины материала. После этого жилы разводят в стороны плоскогубцами. Внешняя изоляция рвется по линии надреза.

Изоляция

Места соединения или повреждения оплетки тщательно изолируют. При электромонтаже для этого используют специальную ленту. Для начала жилы изолируют раздельно, затем вместе. Нанесенный на изоленту клей должен обеспечивать прочную фиксацию. Материал надежно приклеивают к виниловой оплетке на ширину, препятствующую отслаиванию или сползанию.

Читайте также:
Шкаф-купе в ванную

Прокладка проводки

Современный провод укладывают без дополнительной изоляции. При проведении работ учитывают, что:

  • места соединений оставляют в свободном доступе;
  • провод не должен подвергаться механическим воздействиям;
  • нужно исключать влияние агрессивных факторов на места соединений;
  • нельзя задевать проводку инструментом при выполнении каких-либо работ.

При прокладке кабелей под землей используют бронированный канал. Гидроизоляция не является обязательной, поскольку провод нечувствителен к воздействию влаги.

Скрытые сети обустраивают так, чтобы вероятность их повреждения отсутствовала. Необходимо сделать и сохранить схему проводки.

Выбор электрического провода

Кабели бывают одно- или многожильными. В первом случае имеется единственная токопроводящая жила. В многожильном кабеле шина состоит из сплетенных проводников. Провода различают и по количеству токопроводящих элементов. Для создания 3-фазной проводки применяют 4-жильный кабель. Состоящие из 3 проводников изделия используются при создании бытовых электросетей. Жилы изготавливают из серебра, алюминия или меди.

Первый вариант применяется в промышленных условиях, что объясняется высокой электропроводностью. В быту используют медь или алюминий.

Провод для заземления

Такой кабель соединяется с землей и применяется для защиты от поражения током при пробое на корпус прибора. Использование некоторых устройств без заземления недопустимо. К ним относятся насосы, нагреватели, стиральные машины. Если заземление отсутствует, его необходимо подвести. Обязательной является установка УЗО, защищающего от удара током при замыкании фазы на корпус.

Электротехника и электрическая механика

Эти науки являются взаимосвязанными. Электрическая механика изучает базовые схемы оборудования, потребляющего электроэнергию. Курс теории и практики помогает научиться ремонту бытовых приборов. Основные положения электрической механики позволяют понять, как работают двигатель и генератор, в чем заключаются различия между стабилизатором и трансформатором.

Техника безопасности

При работе с электрическими сетями или приборами соблюдают такие правила:

  1. Перед началом эксплуатации или ремонта оборудования изучают инструкцию. В разделе безопасности прописаны недопустимые действия, приводящие к замыканию и поражению током.
  2. Устройства необходимо обесточивать. После этого оценивают состояние изоляции проводов. При выявлении повреждений оголенные места закрывают изолентой.
  3. При невозможности обесточивания электрической сети работают в диэлектрических перчатках, обуви на резиновой подошве и специальных очках.
  4. Доступ к распределительным щитам и электроустановкам начинающим специалистам запрещен.
  5. Нельзя касаться лишенных изоляции проводов руками. Для поиска фазы используют мультиметры, индикаторные отвертки и другие инструменты.

Неисправности электротехники

Считается, что необходимо уметь выявлять 2 основных типа поломок: отсутствие надежного нужного контакта и наличие ненужного. В электромонтаже не бывает случаев, когда 2 элемента сети бывают связаны тем или иным сопротивлением. Они бывают только соединенными или разъединенными.

Рекомендации начинающим

Электрик-новичок должен следовать таким советам:

  1. При выборе сечения кабеля учитывают простой закон: мощность равна напряжению, умноженному на силу тока. По этой формуле рассчитывают главные токовые параметры. С помощью таблиц выбирают сечение проводников и характеристики других элементов электрической сети.
  2. Провода прокладывают строго горизонтально или под прямым углом. Расстояние от потолка до кабеля должно составлять не менее 20 см. При наличии в помещении труб от них отступают не менее 40 см.
  3. Распределительные щиты устанавливают на высоте 1,2 м. Между отдельными модулями оставляют расстояние, обеспечивающее циркуляцию воздуха.
  4. Электрические цепи защищают автоматическими выключателями, срабатывающими при утечке тока.

Чтобы стать опытным электриком, нужно постоянно выполнять практические задания и совершенствовать навыки.

Теодолит и нивелир: сходства и отличия

  1. Характеристика устройств
  2. Схожие параметры
  3. Принципиальные отличия
  4. Что лучше выбрать?

Любое строительство, независимо от своих масштабов, не может быть успешно выполнено без определённых измерений на застраиваемой территории. Чтобы облегчить эту задачу, с течением времени человек создал специальные приборы, называемые геодезическими.

Эта группа устройств включает в себя различные приспособления, которые не только походят друг на друга по конструкции и функционалу, но и различаются, зачастую кардинально. Яркими примерами таких приборов являются теодолит и нивелир.

Оба приспособления можно назвать необходимыми для проведения строительных работ. Ими пользуются и любители, и профессионалы. Но нередко у неопытных возникает вопрос, чем же отличаются эти устройства, и могут ли они взаимозаменяемыми? В этой статье мы постараемся на него ответить. А заодно расскажем о главных особенностях обоих приборов.

Характеристика устройств

Итак, давайте по очереди рассмотрим оба аппарата и начнём с теодолита.

Теодолит – оптическое устройство из геодезической группы, предназначенное для измерения углов, вертикальных и горизонтальных. Основными составляющими теодолита являются:

  • лимб – стеклянный диск с изображением шкалы, на котором указаны градусы от 0 до 360;
  • алидада – во многом схожий с лимбом диск, расположенный на той же оси, вокруг которой свободно вращается, имеет свою шкалу;
  • оптика – объектив, линза и сетка нитей, необходимые для наведения на измеряемый объект;
  • подъёмные винты – применяются для регулировки прибора в процессе наведения;
  • система уровней – позволяет установить теодолит в вертикальном положении.

Также можно выделить корпус, в котором располагаются вышеназванные детали, подставку и штатив на трёх ногах.

Теодолит размещается в вершине измеряемого угла таким образом, чтобы центр лимба оказался именно в данной точке. Затем оператор вращает алидаду, чтобы совместить её с одной стороной угла и зафиксировать показания по кругу. После этого алидаду нужно переместить к другой стороне и отметить второе значение. В завершение остаётся лишь вычислить разницу между полученными показаниями. Измерение всегда происходит по одному принципу как для вертикальных, так и для горизонтальных углов.

Существует несколько разновидностей теодолита. В зависимости от класса различают:

  • технические;
  • точные;
  • высокоточные.

В зависимости от конструкции:

  • простые – алидада закреплена на вертикальной оси;
  • повторительные – лимб и алидада могут вращаться не только отдельно, но и совместно.

В зависимости от оптики:

  • фототеодолит – с установленной фотокамерой;
  • кинотеодолит – с установленной видеокамерой.

Отдельно стоит упомянуть более современную и совершенную разновидность – электронные теодолиты. Они отличаются высокой точностью измерений, наличием цифрового дисплея, а также встроенной памятью, которая позволяет хранить полученные данные.

Теперь давайте поговорим о нивелирах.

Читайте также:
Шкаф-купе в детскую (66 фото): модель в комнату мальчику для одежды, радиусный белый с печатью

Нивелир – оптический прибор из геодезической группы, предназначенный для измерений точек высоты на местности или внутри возведённых построек.

Конструкция нивелира во многом схожа с теодолитом, но имеет свои особенности и элементы:

  • оптика, включающая зрительную трубу и окуляр;
  • зеркальце, закреплённое внутри трубы;
  • система уровней для установки;
  • подъёмные винты для установки рабочего положения;
  • компенсатор для удержания горизонтальной оси.

Нивелир измеряет высоту следующим образом. Сам аппарат устанавливается в точке, называемой обзорной. Из неё должно быть хорошо видно все остальные измеряемые точки. После чего в каждой из них поочерёдно размещают инварную рейку со шкалой. И если все точки имеют разные показания, значит, местность неровная. Высота точки определяется путём вычисления разницы между её положением и положением обзорной точки.

Нивелир тоже имеет несколько разновидностей, но не так много, как теодолит. К ним можно отнести:

  • оптические приборы;
  • цифровые приборы;
  • лазерные приборы.

Цифровые нивелиры обеспечивают наиболее точные результаты, а также простоту применения. Такие приборы оснащаются специальным программным обеспечением, которое позволяет быстро обработать зафиксированные показания. Затем они сохраняются на самом устройстве, благодаря наличию встроенной памяти.

Сегодня в строительстве широко применяется разновидность лазерных нивелиров. Их отличительной чертой является наличие лазерного указателя. Его луч пропускается через специальную призму, которая применяется вместо линзы. В итоге два таких луча образовывают в пространстве перпендикулярные плоскости, пересекающиеся друг с другом. Именно они помогают выровнять поверхность. Поэтому лазерные нивелиры часто применяются для ремонта.

Профессиональные строители, часто имеющие дело с неровными поверхностями, используют подвид ротационных лазерных нивелиров. Он дополнительно оснащён электрическим двигателем, который позволяет быстрее перемещать и разворачивать сам прибор.

Схожие параметры

Человек, не разбирающийся в измерительной технике, может с лёгкостью перепутать теодолит с нивелиром. И это неудивительно, ведь как мы уже сказали, оба прибора относятся к одной геодезической группе устройств, применяемых для измерений на местности.

Также путаница может быть вызвана внешним сходством и одинаковыми элементами, входящими в состав приборов. К ним можно отнести зрительную систему, в составе которой имеется сетка нитей для наведения.

Пожалуй, на этом какие-либо значимые похожести заканчиваются. Теодолит и нивелир имеют гораздо больше различий, чем может показаться изначально. Тем не менее в некоторых ситуациях и при определённых условиях эти приспособления могут заменять друг друга. Но об этом мы поговорим чуть позже. А сейчас давайте рассмотрим наиболее важный вопрос, а именно отличительные черты теодолита и нивелира.

Принципиальные отличия

Итак, как вы уже поняли, два рассматриваемых прибора имеют различные предназначения, хоть и близкие по духу. Говоря об отличиях в первую очередь нужно рассказать о функционале устройств.

Теодолит универсален и позволяет производить разнообразные измерения, включая не только угловые, но и линейные, в горизонтальной и в вертикальной плоскости. Поэтому теодолит более востребован при разноплановом строительстве.

Нивелир очень часто называют узкоспециализированным прибором. С его помощью можно обустроить идеально ровную поверхность. Он пригодится, например, для заливки фундамента.

Соответственно, и конструкции данных аппаратов также различаются. Нивелир имеет зрительную трубу и цилиндрический уровень, которые отсутствуют в теодолите.

В целом же теодолит имеет более сложное строение. С его основными деталями вы могли познакомиться в начале этой статьи. Также он оснащается дополнительной осью измерений, отсутствующей в нивелире.

Аппараты отличаются друг от друга отсчётной системой. Нивелиру для проведения измерений требуется инварная рейка, в то время как теодолит имеет двухканальную систему, которая считается более совершенной.

Конечно, на этом отличия не заканчиваются. Они также зависят от моделей и разновидностей приборов. Так, многие современные теодолиты располагают компенсатором, позволяющим увеличить потенциал визирования.

Оба приспособления имеют схожие разновидности, к которым относятся электронные теодолиты и нивелиры. Но похожи они друг на друга лишь тем, что обеспечивают обратное изображение. Внутри же каждый из них имеет свои особенности.

Что лучше выбрать?

Ответ на этот вопрос довольно прост: лучше выбрать и то и другое. У профессиональных строителей на вооружении всегда имеются оба приспособления. Ведь теодолит и нивелир выполняют разные функции.

И всё же, давайте разберёмся, какой из аппаратов лучше и в чём заключается его превосходство.

Мы уже сказали, что теодолит более универсален благодаря своей многофункциональности. По количеству областей, где он применяется, теодолит заметно превосходит нивелир. К ним можно отнести астрономию, мелиорацию и т. д. К тому же нивелир можно использовать лишь на горизонтальной плоскости, в то время как теодолит одинаково работает с обеими из них.

Дополнительными преимуществами теодолита считаются надёжность и высокая практичность. К огромным же его плюсам можно отнести тот факт, что для проведения замеров достаточно одного человека. Нивелир же требует участия двух людей, один из которых займётся установкой инварной рейки.

Поэтому если у вас нет помощника, то измерить высоты нивелиром вы не сможете.

В некоторых случаях теодолит может даже заменить собой нивелир. Для этого нужно установить его, закрепив зрительную трубу в горизонтальном положении. Далее, также понадобится рейка. Однако теодолит не способен обеспечить высокую точность. Поэтому его применяют лишь в тех случаях, когда нужны только приблизительные данные.

Но и нивелир может послужить заменой теодолиту. Для этого придётся дополнить прибор горизонтальным кругом с градусами. Таким способом удастся измерить горизонтальные углы на местности. Стоит помнить, что точность таких замеров, как и в предыдущем случае, тоже страдает.

Можно сделать вывод, что объективно теодолит превосходит своего собрата по многим параметрам. Вот только они не являются взаимоисключающими. Теодолит не может полностью заменить собой нивелир. А значит, для выполнения серьёзных строительных или ремонтных работ вам понадобятся оба этих приспособления, которые в определённых ситуациях будут друг друга дополнять.

О том, что предпочтительнее: теодолит, нивелир или рулетка, смотрите далее.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: