Что тяжелее песок или щебень?

Плотность грунта

В таблице представлена плотность грунта в естественном залегании в размерности кг/м 3 . Плотность приведена с учетом естественной структуры грунта и природной влажности для таких грунтов, как: алевролиты, аргилиты, гравийно-галечные грунты, известняки, пески и т. д.

Грунт представляет собой разнообразные горные породы, осадки, почвы и некоторые искусственные образования и в общем случае состоит из трех фаз: твердой, жидкой и газообразной.

Фазы грунта динамически взаимодействуют. Твердые частицы грунтов состоят из породообразующих минералов. Жидкая составляющая грунта представляет собой воду, различной степени минерализации. Содержащиеся в грунте газы могут находиться как в свободном состоянии, так и растворены в воде.

Плотность грунта с учетом его естественной влажности и содержания газов представляет собой отношение массы грунта к занимаемому им объему и определяется по формуле:

где m — масса грунта;
V — объем грунта с учетом влаги и газов;
m1, V1, m2, V2, m3, V3 — соответственно масса и объем твердой, жидкой и газообразной фаз грунта.
Примечание: поскольку масса газообразной компоненты грунта пренебрежительно мала и не влияет на общую плотность, на практике ей можно пренебречь.

Следует отметить, что плотность грунта определяется индивидуальной плотностью слагающих его компонентов, зависит от состава грунта, его структуры и составляет величину от 700 до 3300 кг/м 3 .

К грунтам с высокой плотностью в естественном состоянии можно отнести такие грунты, как: кварциты, граниты, гнейсы, диориты, сиениты, габбро, андезиты, базальты, порфириты, трахтиты, мрамор, ангидриты, кремень.

К легким грунтам с низким показателем естественной плотности относятся: котельные шлаки, пемза, туф, торф, мягкие известняки, грунты растительного слоя.

Средняя плотность грунта — таблица естественной плотности

Грунт Плотность, кг/м 3
Алевролиты
Слабые, низкой прочности 1500
Крепкие, малопрочные 2200
Аргилиты
Крепкие, плитчатые, малопрочные 2000
Массивные, средней прочности 2200
Вечномерзлые и мерзлые сезонно-протающие грунты
Растительный слой, торф, заторфованные грунты 1150
Пески, супеси, суглинки и глины без примесей 1750
Пески, супеси, суглинки и глины с примесью гравия, гальки, дресвы, щебня в количестве до 20% и валунов до 10% 1950
Пески, супеси, суглинки и глины с примесью гравия, гальки, дресвы, щебня в количестве более 20% и валунов более 10%, а также гравийно-галечные и щебенисто-дресвяные грунты 2100
Глина
Мягко- и тугопластичная с примесью щебня, гальки, гравия или строительного мусора до 10% 1750
Мягко- и тугопластичная без примесей 1800
Мягко- и тугопластичная с примесью более 10% 1900
Мягкая карбонная 1950
Твердая карбонная, тяжелая ломовая сланцевая 1950…2150
Гравийно-галечные грунты (кроме моренных)
Грунт при размере частиц до 80 мм 1750
Цементированная смесь гальки, гравия, мелкозернистого песка и лёссовидной супеси 1900…2200
Грунт при размере частиц более 80 мм 1950
Грунт при размере частиц более 80 мм, с содержанием валунов до 10% 1950
Грунт при размере частиц более 80 мм, с содержанием валунов до 30% 2000
Грунт при размере частиц более 80 мм, с содержанием валунов до 70% 2300
Грунт при размере частиц более 80 мм, с содержанием валунов более 70% 2600
Грунты ледникового происхождения (моренные)
Пески, супеси и суглинки при коэффициенте пористости или показателе консистенции более 0,5 и содержании частиц крупнее 2 мм до 10% 1600
Пески, супеси и суглинки при коэффициенте пористости или показателе консистенции до 0,5, а также глины при показателе консистенции более 0,5 и содержании частиц крупнее 2 мм до 10% 1800
Глины при показателе консистенции до 0,5 и содержании частиц крупнее 2 мм до 10% 1850
Пески, супеси, суглинки и глины при коэффициенте пористости или показателе консистенции более 0,5 и содержании частиц крупнее 2 мм до 35% 1800
То же, до 65% 1900
То же, более 65% 1950
Пески, супеси, суглинки и глины при коэффициенте пористости или показателе консистенции до 0,5 и содержании частиц крупнее 2 мм до 35 % 2000
То же, до 65% 2100
То же, более 65% 2300
Валунный грунт (содержание частиц крупнее 200 мм более 50%) при любых показателей пористости и консистенции 2500
Грунт растительного слоя
Без корней кустарника и деревьев 1200
С корнями кустарника и деревьев 1200
С примесью щебня, гравия или строительного мусора 1400
Диабазы
Сильно выветрившиеся, малопрочные 2600
Слабо выветрившиеся, прочные 2700
Незатронутые выветриванием, крепкие, очень прочные 2800
Незатронутые выветриванием, особо крепкие, очень прочные 2900
Доломиты
Мягкие, пористые, выветрившиеся, средней прочности 2700
Плотные, прочные 2800
Крепкие, очень прочные 2900
Змеевик (серпентин)
Выветрившийся малопрочный 2400
Средней крепости и прочности 2500
Крепкий, прочный 2600
Известняки
Мягкие, пористые, выветрившиеся, малопрочные 1200
Мергелистые слабые, средней прочности 2300
Мергелистые плотные, прочные 2700
Крепкие, доломитизированные, прочные 2900
Плотные окварцованные, очень прочные 3100
Кварциты
Сланцевые, сильно выветрившиеся, средней прочности 2500
Сланцевые, средне выветрившиеся, прочные 2600
Слабо выветрившиеся, очень прочные 2700
Не выветрившиеся, очень прочные 2800
Не выветрившиеся, мелкозернистые, очень прочные 3000
Конгломераты и брекчии
Слабосцементированные, а также из осадочных пород на глинистом цементе, малопрочные 1900…2100
Из осадочных пород на известковом цементе, средней прочности 2300
Из осадочных пород на кремнистом цементе, прочные 2600
С галькой из изверженных пород на известковом и кремнистом цементе, очень прочные 2900
Коренные глубинные породы (граниты, гнейсы, диориты, сиениты, габбро и др.)
Крупнозернистые, выветрившиеся и дресвяные, малопрочные 2500
Среднезернистые, выветрившиеся, средней прочности 2600
Мелкозернистые, выветрившиеся, прочные 2700
Крупнозернистые, не затронутые выветриванием, прочные 2800
Среднезернистые, не затронутые выветриванием, очень прочные 2900
Мелкозернистые, не затронутые выветриванием, очень прочные 3100
Микрозернистые, порфировые, не затронутые выветриванием, очень прочные 3300
Коренные излившиеся породы (андезиты, базальты, порфириты, трахтиты и др.)
Сильно выветрившиеся, средней прочности 2600
Слабо выветрившиеся, прочные 2700
Со следами выветривания, очень прочные 2800
Без следов выветривания, очень прочные 3100
Не затронутые выветриванием, микроструктурные, очень прочные 3300
Лёсс
Мягкопластичный 1600
Тугопластичный с примесью гравия или гальки 1800
Твердый 1800
Мел
Мягкий, низкой прочности 1550
Плотный, малопрочный 1800
Мергель
Мягкий, рыхлый, низкой прочности 1900
Средний, малопрочный 2300
Плотный средней прочности 2500
Мусор строительный
Рыхлый и слежавшийся 1800
Сцементированный 1900
Песок
Без примесей 1600
Барханный и дюнный 1600
С примесью щебня, гальки, гравия или строительного мусора до 10% 1600
То же, с примесью более 10% 1700
Песчаник
Выветрившийся, малопрочный 2200
На глинистом цементе средней прочности 2300
На известковом цементе, прочный 2500
Плотный, на известковом или железистом цементе, прочный 2600
Кремнистый, очень прочный 2700
На кварцевом цементе, очень прочный 2700
Ракушечники
Слабо цементированные, низкой прочности 1200
Сцементированные, малопрочные 1800
Сланцы
Выветрившиеся, низкой прочности 2000
Окварцованные, прочные 2300
Песчаные, прочные 2500
Кремнистые, очень прочные 2600
Окремнелые, очень прочные 2600
Слабо выветрившиеся и глинистые 2600
Средней прочности 2800
Солончаки и солонцы
Мягкие, пластичные 1600
Твердые 1800
Суглинки
Легкие и лёссовидные, мягкопластичные без примесей 1700
То же, с примесью гальки, щебня, гравия или строительного мусора до 10% и тугопластичные без примесей 1700
Легкие и лёссовидные, мягкопластичные с примесью гальки, щебня, гравия, или строительного мусора более 10%, тугопластичные с примесью до 10%, а также тяжелые, полутвердые и твердые без примесей и с примесью до 10% 1750
Тяжелые, полутвердые и твердые с примесью щебня, гальки, гравия или строительного мусора более 10% 1950
Супеси
Легкие, пластичные без примесей 1650
Твердые без примесей, а также пластичные и твердые с примесью щебня, гальки, гравия или строительного мусора до 10% 1650
То же, с примесью до 30% 1800
То же, с примесью более 30% 1850
Торф
Без древесных корней 800…1000
С древесными корнями толщиной до 30 мм 850…1050
То же, более 30 мм 900…1200
Трепел
Слабый, низкой прочности 1500
Плотный, малопрочный 1770
Чернозёмы и каштановые грунты
Твердые 1200
Мягкие, пластичные 1300
То же, с корнями кустарника и деревьев 1300
Щебень
При размере частиц до 40 мм 1750
При размере частиц до 150 мм 1950
Шлаки
Котельные, рыхлые 700
Котельные, слежавшиеся 700
Металлургические невыветрившиеся 1500
Прочие грунты
Пемза 1100
Туф 1100
Дресвяной грунт 1800
Опока 1900
Дресва в коренном залегании (элювий) 2000
Гипс 2200
Бокситы плотные, средней прочности 2600
Мрамор прочный 2700
Ангидриты 2900
Кремень очень прочный 3300
Читайте также:
Умывальник из бутылки: видео-инструкция как сделать своими руками, особенности самодельных рукомойников из 5-литровых пластиковых емкостей и шприца для дачи, цена, фото

Плотность грунтов на практике определяет различными методами. В зависимости от влажности, структуры и механических свойств грунта применяют следующие методы определения плотности:

  • режущим кольцом;
  • взвешиванием в воде парафинированных образцов;
  • взвешиванием в нейтральной жидкости;
  • пикнометрические методы.
  1. Алексеев В. М., Калугин П. И. Физико-механические свойства грунтов и лабораторные методы их определения. Воронеж, гос. арх.-строит. ун-т, 2009 — 89 с.
  2. ГОСТ 25100-2011 Грунты. Классификация.
  3. ГОСТ 5180-84 Грунты. Методы лабораторного определения физических характеристик.
  4. Территориальные единичные расценки на строительные работы ТЕР-2001-01. Земляные работы. — СПб: ГУ «Центр мониторинга и экспертизы цен», 2008 — 293 с.
  5. Юрик Я. В. Основные характеристики физико-механических свойств грунтов. Таблицы для расчета. Киев: «Будiвельник», 1976 — 216 с.

Как не быть обманутым при доставке сыпучих материалов?

Сыпучие материалы – основа любого строительства. Ни одна гражданская и промышленная стройка не обходится без песка и щебня — двух главных игроков строительного «поля». И именно на них чаще всего хотят сэкономить. Стремление найти стройматериалы подешевле обычно выходит боком. Вы же помните, что скупой платит дважды? Недобросовестные перевозчики и посредники так и норовят обмануть своих клиентов, и с каждым годом делают это всё виртуознее. О схемах обмана и как их избежать — читайте в статье.

5 схем обмана — объём, цена, качество, машины, документы

Как обманывают на недогрузе

Меньший объём за большую сумму: хитрости, о которых молчат поставщики.

Пожалуй, самый распространенный вид обмана — когда привозят меньший объем, чем вы заказывали, но за большие деньги. Условно платите вы за 10 кубов, а привозят 8. Как это возможно?

Во-первых, перевозчик рассчитывает на неопытность заказчика, суматоху на объекте и скорость выгрузки материала. Чем быстрее песок или щебень окажутся на земле, тем выше вероятность, что его примут, оплатят и еще спасибо скажут. Сыпучие материалы при выгрузке образуют горку, измерить объём которой довольно сложно. Гораздо легче и правильнее сделать это прямо в кузове автомобиля. Возьмите рулетку, залезьте в кузов и замерьте его длину, ширину и высоту изнутри. Путём нехитрых вычислений узнаете объём привезенного материала.

Во-вторых, перевозчики в своем желании обмануть не стоят на месте. Так они придумали фокус с машинами. Смысл его вот в чём: к обычному кузову самосвала на 10 кубов приваривают борта с обеих сторон. По идее объём должен увеличиться куба на 3-4. Перевозчик заявляет, что может привезти больше, чем 10 кубов песка или щебня, оплату берёт как с 13-14 кубов, но по факту привозит те же 10, а иногда и 9 кубов. Объясняем, почему. Наращенные борта оказываются не единственной переделкой в самосвале. Горе-перевозчики поднимают дно кузова и сооружают так называемое корыто. За счет этого кажется, что объём кузова стал больше, а на деле — нет.

Пример обмана на недогрузе:

10 кубов гравийного щебня с доставкой в Мытищи будут стоить 23000 рублей — 2000 за куб щебня и 3000 доставка. То есть стоимость куба с доставкой выходит 2300 руб.

При звонке частным перевозчиками вам могу назвать меньшую цену — 20 000-21 000 рублей.

Привезут вам при этом 7-8 кубов, вместо 10-ти оговоренных.

Вам кажется, что вы нашли цену дешевле, но по факту вы заплатите за куб 2625 руб. (21 000 делим на 8 кубов=2652). Т.е. как минимум вы переплачиваете 3500 руб еще и с учётом доставки.

Но переплата — это меньшая из бед, с который вы сталкиваетесь в случае недогруза. Обычно недогруз обнаруживается в процессе работ, когда материала не хватает, техника вынужденно простаивает, часы аренды капают. Персонал сидит без работы и за это бесцельно проведённое время приходится платить.

Выход один: дозаказать щебень и заново оплатить доставку. В нашем примере, придётся выложить ещё 3000 (доставка) и оплатить 4000 за недостающие 2 куба щебня. Так при дозаказе щебень получается почти золотой. Остаётся только надеется, что привезут его оперативно, но, как правило, сроки доставки срываются минимум на день. Всё это время работа будет стоять, ведь в строительстве невозможно начать следующий этап, пока не завершён предыдущий.

Узнаём сколько материала в кузове

Думаете, при таких виртуозных способах обмана невозможно подстраховаться? Не всё так плохо: существуют способы проверить объём привезённого товара.

  • Поставщики часто обманывают клиентов, пользуясь визуальным обманом. Обратите внимание, в каком виде материал находится в машине. Он лежит ровным слоем или сформирован в горку? Если видите горку — это повод насторожиться. Большая куча щебня выглядит объёмнее и вопросов по количеству товара у заказчиков не возникает. Тем не менее, недовес в таких случаях практически гарантирован. Удостовериться в соответствии заказу можно, если попросить водителя или рабочего разровнять материал по кузову. Если водитель отказывается, сомнений в обмане быть не может, смело отправляйте машину обратно. Если щебень всё же разровняли, но вы видите, что он явно ниже краёв кузова — переходите к следующему этапу.
  • Замерьте объём кузова рулеткой. Мы об этом говорили выше, но лучше еще раз повторить. Делайте замер по внутреннему контуру. Или попросите у водителя СТС, узнайте модель самосвала, его грузоподъёмность и объём. Отказ в предоставлении документов или препятствие замерам смело расценивать как сокрытие обмана.
Читайте также:
Стандартный размер облицовочного кирпича

Внимание! Узнать, сколько материала вам привезли будет невозможно, если его выгрузят из машины. Не разрешайте разгружаться, пока не удостоверитесь в соответствии объёмов.

Как обманывают на цене

Здесь тоже есть 2 варианта развития событий — изменение цены и самая низкая цена по рынку.

  • Изменение цены. Представим, что вы уже оформили заказ щебня или песка по цене 2000 рублей за куб и спокойно ждёте доставку. Спустя пару часов вам звонят и говорят, что заказанный материал неожиданно закончился, но есть аналогичный. Правда, стоит он дороже. Расчет в такой ситуации сделан на ожидание поставки в конкретную дату. Если получить заказ надо срочно, работа встала и грозит большой неустойкой, заказчик будет готов переплатить. Наш совет — не иметь дел с теми, кто быстро переобувается. Надежный поставщик даже дорогой материал продаст по той же цене, что сделан заказ. Потому что это вопрос репутации и долгосрочного сотрудничества.
  • Самая низкая цена. Стремление сэкономить может поставить вас в неловкую ситуацию. Выбирая, где купить щебень, вы видите десятки предложений и, конечно, выбираете самый дешёвый вариант. Но там, где дёшево, почти всегда присутствует какой-то обман, и чаще всего связан он с недогрузом, о котором мы рассказали выше.

Как обманывают на качестве материалов

Очень просто — привозят товар ниже качеством, чем заказанный. Такое часто бывает, например, с гравийным или вторичным щебнем.

  • Гравийный щебень подменяют круглым гравием, он же окатыш, который не обладает свойствами сцепления, увеличивает расход цемента при производстве бетона и снижает качество итогового продукта. Или привозят немытый гравийный щебень с примесями песка и глины.
  • Вместо вторичного щебня продают строительный мусор, запрещенный к использованию на дорогах. В нём полно примесей после переработки бетонных плит: пластика, стекла, металла. Если засыпать непереработанным строительным мусором дорогу, можно легко нарваться на штрафы Природоохранной инспекции.
  • заказывайте у проверенных поставщиков;
  • узнайте заранее, есть ли у продавца база, можно ли туда приехать и посмотреть материал до заказа;
  • просите реальные фото товара перед покупкой, а также сертификаты и паспорт на партию;
  • если в принципе не знаете, как выглядит материал, изучите информацию в интернете — картинки, статьи, видео.

Как обманывают на машинах

В первую очередь некоторые перевозчики надеются на то, что заказчик не разбирается в марках машин и не заметит подмены.

  • КамАЗ 55111 имеет кузов объёмом 6-8 кубов и грузоподъёмность всего 10 тонн. 1 куб песка весит 1,5 тонны и 1 куб щебня весит примерно 1,4 тонны, то есть этот самосвал не сможет загрузить 10 кубов как бы вам ни заверяли поставщики.
  • КамАЗ 65115 имеет грузоподъемность 15 тонн и кузов 10 кубов. Вот он уже сможет загрузить до 10 кубов песка и щебня, но при этом в кузове не должно быть пусто. Поэтому обязательно уточняйте модель самосвала, на которой будет осуществляться доставка. Проверить параметры машины заранее можно на официальном сайте завода-производителя.

Как обманывают на документах

  • Обращаясь к частникам, будьте готовы, что никаких документов вам не выдадут. Чек, накладная, сертификаты, паспорт на продукцию — обо всем этом забудьте. Как правило, частники не открывают ИП, не платят налоги и, соответственно, работают нелегально. Низкая цена, возможно, и компенсирует отсутствие гарантий, но только в том случае, если вам повезет. Частник окажется порядочным, материала хватит, и он будет хорошего качества. Если нет, следы перевозчика вы вряд ли найдете. Да и не сможете предъявить ему никаких цивилизованных претензий.
  • На документах обманывают и фирмы-однодневки. Отличить их от надежных компаний, много лет работающих на рынке, несложно. Надо лишь провести небольшую проверку со своего компьютера или смартфона. Вся информация, включая налоговые сведения, судебные иски, состояния счетов и наличие техники на балансе, есть в открытом доступе. Вбейте в поисковик название компании, просмотрите первые две страницы выдачи и почитайте отзывы.

5 способов предотвратить обман

Чтобы избежать лишних проблем, нужно выполнить ряд предостерегающих действий во время заказа и во время приёмки товара.

  • Заказывайте материал только у собственников транспорта. Заказ у посредников повышает вероятность того, что вам придётся платить за «воздух».
  • Старайтесь заказывать не у частных лиц, а компаний. Они несут ответственность за качество и количество материала.
  • При заказе по телефону сообщите, что лично будете замерять машину, и уточните, на каком именно самосвале будет происходить доставка.
  • Попросите присутствовать на погрузке. Обычно в этой просьбе покупателям отказывают под разными предлогами. Если отказали и вам, задумайтесь, скорее всего вас хотят обмануть на количестве или качестве материала.
  • Запрашивайте фото материала до заказа, если не сможете приехать на загрузку лично.

Компания “Эко-щебень” в своей работе гарантирует прозрачность и чистоту сотрудничества. У нас 3 базы в Москве — на севере и юге, куда можно приехать в любой момент, убедиться в наличии и качестве стройматериалов, поприсутствовать на погрузке товара и лично проконтролировать процесс. Наши водители никогда не отказывают в замере кузова самосвала, а материал в кузове заранее разровнен по всему периметру. Документы тоже все в порядке: с каждой машины мы выдаём ТТН, а юридическим лицам — УПД и договор. Не срываем сроки, заказы привозим в день оформления, либо по согласованию с заказчиком. В случае форс-мажоров с нашей стороны (что бывает редко) всегда решаем вопрос в пользу клиента.

Остались вопросы? Звоните +7 (495) 665-83-13, мы всегда рады дать консультацию!

Авто холодильник на элементе Пельтье своими руками

В своем первом посте, хотел бы поделиться собственным опытом по созданию авто холодильника своими руками. Изучив достаточно много видео сюжетов из YOUTUBE, данной тематики, мой выбор пал на принцип работы авто холодильника на элементе Пельтье. Чем удобен данный принцип при создании холодильника, какие плюсы и минусы имеет прибор и в чем особенности работы такого авто холодильника расскажу Вам сегодня.

Принцип работы и конструкция.

Читайте также:
Современная садовая техника

Основной принцип работы элемента Пельтье, который был выбран за основу в качестве охлаждающего элемента, для создания авто холодильника, заключается в использование разности температур, возникающей на верхней и нижней частях самого элемента. То есть, если на элемент подается питание равное 12В, возникающий ток внутри элемента преобразует энергию в тепловое излучение на верхней стороне элемента (нагревается), в то время как на противоположной, — нижней части, формируется холодный поток энергии (охлаждается). Именно он и является источником охлаждения для конструкции холодильника. Что при этом необходимо запомнить? – Должна строго соблюдаться полярность проводов, при подачи тока для питания элемента. Именно поэтому, при приобретении, и установке элемента Пельтье в нашу конструкцию, прошу обратить внимание на цвета проводов, которые питают сам элемент. Красный (+) и черный (-), если при этом случайно изменить полярность при установке, будут нагреваться и охлаждаться противоположные части элемента. При сборе конструкции так же критично, — обеспечить эффективное принудительное воздушное охлаждение части элемента, которая будет нагреваться (верхняя), с помощью куллера, вентилятора от ПК. При этом, чем мощнее будет сам вентилятор куллера, тем эффективней, а значит холоднее будет нижняя часть элемента. Так же, важнейшей причиной тщательной и аккуратной сборки конструкции охлаждающего элемента нашего холодильника, является надежная изоляционная прокладка, отражающего тепло материала, для верхней стороны элемента Пельтье, чтобы нижняя часть максимально охлаждалась. Крепить элемент между верхним радиатором, который нагревается и нижним, — который охлаждается необходимо по типу «сэндвич», на практике это выглядит следующим образом: верхний радиатор, затем тонкий слой теплопроводной пасты КПТ-8 (возможно приобрести в магазинах, по продаже комплектующих к компьютерной технике или радио рынок, цена вопроса 10-25 грн.за тюбик, в качестве емкости иногда используется шприц), на слой пасты плотно клеим верхнюю часть керамической поверхности самого элемента Пельтье, затем снова слой теплопроводной пасты на нижней стороне керамического элемента Пельтье и непосредственно к ней, клеем нижний радиатор, который и будет охлаждать наш холодильник, плотно прижимаем и даем конструкции просохнуть (4-5 часов). Рекомендую так же на нижнем охлаждающем радиаторе установить еще один куллер, — он будет более эффективно распространять холод по внутренней поверхности емкости холодильника, — быстрее будет проходить охлаждение холодильника при запуске, как правило требуется (+/- 1-1,5 часа для достижения рабочей температуры функционирования холодильника). При работе холодильника, дополнительный вентилятор куллера исключает возможность появления конденсата на поверхности внутреннего холодного радиатора (помещенные внутрь продукты не будут влажными!). Этот процесс напрямую зависит от температуры воздуха среды, где находится сам холодильник, чем выше температура, тем дольше будет проходить процесс охлаждение холодильника при запуске. Немаловажную роль в эффективности охлаждения холодильника, играет теплоизоляция самого бокса, который будет использован в качестве емкости для холодильника и его объем! Я применил для этих целей, заранее купленный ящик для инструментов (обязательно наличие фиксаторов замков в нем, чтобы исключить возможность попадания теплого воздуха в холодильник из вне. В качестве внутренней изоляции для бокса холодильника была применена жидкая монтажная пена, и заранее подготовленная дополнительная емкость, которую я изготовил из остатков оконного отлива белого цвета. Пространство между стенками ящика для инструментов и дополнительной емкостью из жести, было задуто монтажной пеной (лишнюю пену, после сушки бокса срезал).

Питание и возможности штатного подключение к сети.

На самом деле, возможностей использования холодильника на элементе Пельтье множество. Это может быть как штатная электро система автомобиля 12В, так и сеть переменного тока 220-240В. Важно сразу постараться, разобраться для каких целей вам необходим холодильник. Конструкция собранная мной, достаточно универсальна, т.к может использовать в качестве питания и сеть переменного тока и сеть постоянного тока в автомобиле. Но при этом возможность универсального использования предполагает большие финансовые затраты на подготовку и сборку авто холодильника. Этот момент объясняется использованием дополнительных встроенных блоков питания в холодильнике, для использования в сети 220-240В. Если использовать в качестве питания прибора только штатную систему автомобиля, можно существенно удешевить конструкцию (отсутствие в холодильнике дополнительных дорогостоящих блоков питания, необходим только штатный разъем прикуривателя для подключения прибора). Мне холодильник понадобился не только в авто но и загородом, удобно использовать, например, холодильник на даче с системой питания в 220-240В в доме. Но это лично мое мнение, если предполагаете использовать исключительно в авто, стоить «постройка» этого чуда будет значительно дешевле. Отдельное внимание необходимо уделить выбору мощности модуля, т.к при подборе эффективного модуля для охлаждения авто холодильника первое на, что следует обратить внимание- это объем емкости для холодильника. Чем больше будет объем бокса, тем мощнее должен быть модуль Пельтье. В маркировке серии модуля первые три цифры – это количество микроэлементов, которые находятся внутри модуля, как правило эта цифра 127. Последние две цифры в маркировке – это интересующая нас сила тока элемента, от которой напрямую зависит мощность прибора. Для примера ниже привожу таблицу серии модулей Пельтье и предварительную стоимость в Днепропетровске на 05.03.2015. Интересующий модуль возможно приобрести здесь, а так же все остальные комплектующие для изготовления.

Таблица мощности элементов Пельтье и приблизительная стоимость.

Модуль Пельтье TEC1-04908 (25х25)мм. 12V — 118,80грн
Модуль Пельтье TEC1-07108 (30х30)мм, 12V — 142,50грн
Модуль Пельтье TEC1-12703 30×30мм 3.2A 12V -140,40грн
Модуль Пельтье TEC1-12704 (40х40)мм, 12V — 202,50грн
Модуль Пельтье TEC1-12706 40×40мм 6А 12V -156,60грн
Модуль Пельтье TEC1-12708 40×40мм 8A 12V — 229,50грн
Модуль Пельтье MT2-1.13-127S 40×40мм — 271,80грн
Модуль Пельтье TEC1-12708S (50х50)мм, 12V -541,50грн
Модуль Пельтье TEC1-12710 (40х40)мм, 12V — 270,10грн
Модуль Пельтье TEC1-12710S (50х50)мм, 12V — 513,00грн
Модуль Пельтье TEC1-12715S (50х50)мм, 12V -604,80грн
Модуль Пельтье MT1-1.3-127GS 30×30мм — 205,80грн

Модуль Пельтье TEC1-12703 30×30мм 3.2A 12V — 140,40грн
Модуль Пельтье MT2,6-0,8-263Т1S 50×50 мм — 246,90грн
Модуль Пельтье TEC1-12715 12V — 571,20грн
Модуль Пельтье MT2-1.13-127S 40×40мм — 271,80грн
Модуль Пельтье TEC1-12708 40×40мм 8A 12V -229,50грн
Модуль Пельтье MT2-1.6-127S 40×40мм -310,60грн
Модуль Пельтье TEC1-12705 40×40мм 5А 12V -205,20грн

Основной принцип при подборе необходимого элемента заключается в точном расчете силы тока элемента с мощностью источника подачи питания к элементу, в пропорциональном соотношении 1:1, т.к при подачи на элемент, силы тока, меньшей, чем заявленная сила тока в серии элемента, приведет к неэффективной работе элемента Пельтье. Не так критично напряжение, но тоже желательно соблюдать пропорцию 1:1. Внимание! При подаче силы тока на элемент, значительно превосходящую мощность самого элемента – нагрев будет происходить с двух сторон элемента, в итоге приведет к перегреву элемента (проверял сам, не повторяйте моих ошибок – потратите деньги на покупку еще одного элемента).Тот же принцип действует при подборе адаптера, если планируете использовать холодильник так же от сети переменного тока 220-240В. В заключении, хотел бы отметить, для удобство использования авто холодильника не лишним будет, если вы разместите выключатель питания, как не банально звучит, достаточно полезный дополнительный модуль в конструкции холодильника)).

Читайте также:
Фундаментные блоки

Преимущества и недостатки холодильника Пельтье.

Начнем с плюсов, прежде всего это компактность и легкость самого «аппарата», мой например рассчитан на 8л., не занимает много места на заднем ряду сидений авто или в багажнике. Простота и надежность использования, при правильной эксплуатации, имею в виду, подаваемую силу тока и напряжение, — прослужит достаточно долго, не требует дополнительного обслуживания и затрат. Стоимость, цена «заводского», как правило, китайского аналога, составляет более 1200 грн., европейские фирменные модели – более 7-10 тыс.грн., но и объем их, соответственно, тоже больше, чем предлагаемый мной вариант. К плюсам можно отнести поддержание холодильником постоянной температуры охлаждения, на протяжении всего периода активной работы, в отличии от обычной сумки-холодильника.
Теперь о минусах, их тоже достаточно, первое – техническая особенность, — поддержание внутренней температуры охлаждения, в среднем, не более 10-15 градусов, от температуры окружающей среды (мороженное конечно в нем не будет храниться в нормальном виде более 1 часа и т.д. Но для перевозки охлажденных напитков температуры более чем достаточно. Второй минус, при «постройке» и эксплуатации холодильника от сети переменного тока, — это достаточно высокая цена адаптера питания нужной силы тока для элемента Пельтье (как правило — это блоки от ноутбука, более 6А силы тока на выходе, их стоимость составляет более 250 грн.). Нужен минимум 1 час работы холодильника для достижение рабочей температуры.

P.S. Если этот пост для вас интересен, буду рад ответить на любые вопросы, поделиться советом, относительно создания, своими руками, авто холодильника на элементе Пельтье.

Внимание! Желательно не эксплуатировать прибор при слабом заряде аккумуляторной батареи авто или заглушенном двигателе. Потребляемая мощность моего варианта холодильника примерно 65 W.

Цена вопроса: Ящик для инструментов (8л.) – 75 грн.(4 месяца назад)
Элемент Пельтье TEC1-12706 40×40мм 6А 12V -85 грн. (покупал 1 год назад)
Радиатор для внутренней части – 4 грн. (покупал 1 год назад)
Монтажная пена – 0 грн. (осталась от ремонта, много не надо, очень неплохо заполняет пространство, даже не большое количество пены в баллоне)
Два куллера – 0 грн. (попросил у знакомых ИТ-шников, в замен на идею…))
Теплопроводная паста КПТ-8 — 20 грн. (один шприц, целый тюбик не нужен).
Теплоизоляционный материал – 0 грн. (остался от обесшумки)
Кусок жести от оконных отливов – 0 грн. (остался от ремонта)
Выключатель -8 грн. (покупал 1 год назад)
Провода – 0 грн. (думаю, с ними нет дефицита)
Дополнительно на внутреннюю часть холодильника установил воздушный термометр, приобрел в зоомагазине -35 грн. (удобная вещь, для контроля внутр.температуры)
Блок питания для сети переменного тока 6А, 12В -150 грн.(если хотите, чтобы питание холодильника было универсальным 12В-220В).
Установил дополнительный блок питания отдельно для двигателей куллеров, чтобы снизить нагрузку на основной блок питания элемента Пельтье – 0 грн. Подойдет самый простой 1А, 12В. (если хотите, чтобы питание холодильника было универсальным 12В-220В)

Термоэлектрический генератор(ТЭГ) на модулях Пельтье

Приветствую всех читателей. В предыдущей теме:Автономная солнечная система в Подмосковье я упомянул про свой ТЭГ, который помогает при отсутствии солнца. В комментариях люди просили на этом остановиться подробнее. Вот, вспомнил, что да как. И отвечаю. Сперва идут мои материалы с Форумхауса многолетней давности. Не все, а для понимания.

Итак, год назад, перед ноябрьским отключением электричества, я сваял примитивный термоэлектрический агрегат из одного модуля Пельтье из Вольтмастера, самый дешёвый на 127 ватт холода. Особенности таких модулей – эффективность в генерации 2-3%, максимальная температура нагрева – 150 градусов Цельсия. Из разнообразных обрезков(см. фото)

алюминия склеил/скрутил вокруг модуля два радиатора – один(нижний) на печку для уменьшения температуры, поступающей к модулю, второй – сверху для быстрейшего охлаждения холодной стороны модуля. Оговорюсь, что в охлаждении не силён совсем, посему лепил алюминь, как попало.
Весь агрегат ставился на печку( печь-шведка), точнее на её чугунную плиту, перед растопкой(температура чугунины максимум-до 250 градусов). Эффективная температура на плите держится около 3 часов, средняя выработка энергии в эти часы – 2-2.5 ватт/час. За одну топку получается около 6 ватт энергии кошкины слёзы. Печь топилась каждый день, поэтому в месяц выходило что то около 200 ватт. К выводам агрегата крокодилами подключался простой стабилизатор( из набора e-kits) и потом заряжались пальчиковые батарейки.
В таком виде, в силу маломощности, перспектив я не увидел

Были приобретены модули Пельтье американские от Thermal Enterprises ( вот такие: Model CP1-12730
62mm x 62mm x 3.8mm
Maxiumu power consumption 545 Watts
Operates from 0-16 volts DC and 0-32 amps
Operates from -60 deg C to +180 deg C
Each device is fully inspected and tested
Fitted with 6-inch insulated leads
Perimeter sealed for moisture protection)
Блок из 4 шт этих Гигантиков, соединённых последовательно. Общая тепловая мощность 2180Вт. Радиатор снизу и сверху алюминий+ вентилятор большой.
Подключены были первый год к большому контроллеру (на фото), во второй год – к малому (на фото 30А), все подключения шли через ваттметры (на фото), люблю я их, удобно. Вот мощность с них и снимал – правый нижний угол – мощность на данный момент, левый нижний общая выработка.
0ватт – когда печь холодная, потом постепенное увеличение до прим 30ватт (максимум, что наблюдал, без записи это 37ватт), потом остывание и опять 0 ватт.

Все что выше – это цитаты с Форумхауса 2011-2014 годов.
Теперь о том, что есть сейчас. И о опыте.
Маленький и маломощный ТЭГ на одном элементе Пельтье сгорел на второй год. Не предназначены они все таки для печки. А вот большой блок из мерканцев вполне живой

Хотя года два я его и не доставал. Расчехлил его только в декабре 19-го. Солнца было мало и в качестве малой поддержки покатил.
Итак конструкция: четыре элемента, последовательно соединённых, между двумя ал.радиаторами. Нижний радиатор для того, чтобы немного снизить температуру чугунины, а верхний, чтобы рассеять побыстрей максимум. Сверху ручка. Снял-поставил обратно. Провода на автомат

Читайте также:
Создаем и подключаем бойлер косвенного нагрева своими руками + чертежи и видео

А с него, через DC-DC преобразователь, на аккумуляторы.
В первые года крепилась еще стойка с вентилятором для обдува радиатора, но потом выкинул ее. Не нужна. Проще передвинуть по чугунине печки куда нибудь на край. Там где похолодней.
Этой зимой топлюсь осиной и липой в основном, а от них жара мало. И чугунина особо и не разогревается. Почти нужные 180 градусов и есть.
Теперь по выработке. Жить на такой выработке невозможно. Только в качестве хобби или для малой подзарядки аккумуляторов.
Реальный КПД на производство энергии с них, при дельте в 60градусов – 2,4%. То есть от 2 с лишним штатных киловатт остается 52 ватт в час.
У меня при средней топке в 2.5-3 часа, идет выработка энергии до 5 часов(вместе с остыванием). И суточная выработка от 140 до 190 ватт. В месяц около 5квт.
Последние года я забросил эту игрушку, потому как и ветряк и солнечные батареи даже зимой дают на порядок больше, но в этом году как-то звезды неудачно сошлись. И контроллер ветряка полетел. Пришлось две недели новый ждать. И солнца до нового года почти не было. Поэтому и вытащил с антресоли этот агрегат.
Но на 21 января он опять закинут на антресоль.

PS стоили 8 лет назад такие штатовские элементы на ебэе 25$. Сейчас таких не видел, только гонконгские.

PPS есть у меня почти со школьных лет приятель Витя. Человек очень сложной судьбы. Сейчас он вроде как бомж. И живет в основном рядом или под или над тепломагистралями. Вот ему я подарил пять лет назад такую установку. Бочины трубы больше 100 градусов, и 24 часа в сутки. Теперь Он с нотебуком не расстается. И лампочка светит постоянно.

приятель витя пикабушник по-любому..))

Все это полная хуйня, уж извини афтар. В свое время рассчитывал, но учитывая КПД пельтьешек на генерацию даже на стадии расчета получается полная хуйня.

У меня при средней топке в 2.5-3 часа, идет выработка энергии до 5 часов(вместе с остыванием). И суточная выработка от 140 до 190 ватт. В месяц около 5квт.

Ну во первых не ватт – а ватт/ч. 5 квт/ч стоят для сельской местности рубля 3 за штуку – и того за ГОД – 12*5*3 = 225р – на такую сумму можно нагенерить за целый год, это же почти 4$. Круто, учитывая что один элемент стоит 25$ – можно за 6 лет отбить, если не сгорит.

Во вторых – он скорее всего сгорит, так как надо во первых его не перегреть, а во вторых стремится максимально нагреть – как контролить нагрев, нууу я ваще хз. А насколько помню – паяны они низкотемпеатурным припоем. Нагревать нужно по максимуму – нужна дельта как можно больше с холодной стороной, которую нужно снабжать гигааантским радиатором если в него реально запулить 2квт ))) С радиаторм и некоторой системой контроля нагрева вся эта шарабайка не отобъется и за 50 лет.

ПыСы: у мну была идея для походного генератора от костра, при чем была мысля делать что-то типа котла с кипящей водой, что не давало бы элементам перегреться.

в далеком будущем когда сделают ткань с таким эффектом то одевшись в одежду из неё можно будет собирать с тела человека энергию, охлаждать в жару и обогревать в холод

вот есть аэрогель материал с очень малой теплопроводимостью, вот бы его внутрь Пелтешки чтоб он не давал одной стороне так сильно нагреваться от другой

а сейчас это баловство не больше

Читать невозможно! Автор, купи букварь!

что мешает купить еще пару модулей или всю печь ими облепить? если она постоянно топится.

Во, блин! Это с печи можно ещё и электричество вырабаттывать? Круто!

А я думал элементы Петлье только в системах охлаждения используются.

У меня же печка до красна раскаляется когда угля засыпаю. Надо тоже собрать такую штуковину!

Что за говняный монтаж на последней фотке?

Автономная солнечная система в Подмосковье

Здравствуйте. Буквально вчера поднимал эту тему: Солнышко на новый год и на удивление появилось много вопросов и просьб разъяснить особенности: #comment_157927435. Многое ответил в комментариях. Здесь просто объединяю и дополняю.
Солнечная система состоит из двух независимых блоков. Первый из 15 панелей по 100ватт. Второй из ветряка на 400 ватт и панелей на 280 ватт. Отдельно в доме, в качестве аварийной палочки-выручалочки на темные дни, расположена сборка ТЭГ термогенератор на элементах Пельтье. Весь декабрь очень выручает. Про ветряк я на пикабу уже писал год назад: Про ветряк в развитие сюжета.
Управляются блоки также порознь двумя MPPT контроллерами. Один тайваньский MPP Solar на 60А, другой американский OutBack 80A: https://shop.solarhome.ru/outback-flexmax-80-kontroller-zary. . Инверторов на 220 тоже два. От немецкой Солартроникс на 1 и 2 квт. Проводок параллельных тоже две: на 12/24 и на 220 вольт. Вот такой я извращенец.
Система собиралась с 2010 года по 2015-й. Последние 4.5 года ничего не менялось.
Аккумуляторы Leoch 12/100 8 штук свинец. Работают кстати уже с 2013 года, не нарадуюсь. Аккумуляторы Deka 12/100 4 штуки тоже свинец. Похуже.
Лампы освещения везде светодиодные на 12 вольт, чаще самопайки-самоделки, реже покупные.
Телевизор и ноутбуки с зарядками подключены в низковольтовую сеть через прикуриватели.
На инверторной сети 220 вольт живет только холодильник А+ и насосы колодезные и в доме.
За 10 лет автономной жизни поменял много разных элементов системы. Могу многое сказать про аккумуляторы Delta- г.вно, заливка Пентэласт- г.вно, китайские аналоги немецких контроллеров- г.вно. Литиевые батареи неразумно. Много было выкинуто денег псу под хвост, но это в прошлом.
Цена всех компонентов в современных условиях примерно 250-300 тысяч плюс работа.
В условиях Подмосковья такая конфигурация даёт избыток энергии с февраля по октябрь включительно. Для любых нужд. Проблемы возникают с ноября по январь. Самые проблемы с 20 ноября по 20 января. Это усредненно за десять лет.
Летом же ветряк чаще стоит отключенным, также изредка включаю панели. Электричества больше, чем я могу съесть.
Мои потребности в электричестве зимой ужимаются до 60 квтч в месяц. Летом трачу 250-300 квтч. Если вести активно стройку, то до 1000 квтч в месяц. Система это позволяет. Свет, ноутбук, насосы, вентиляция, телевизор, зарядки, холодильник работают штатно всегда.

Читайте также:
Утеплитель для стен дома снаружи: цена, виды, производители

PS Если вы привыкли к электропечке/духовке, электрочайнику, микроволновке, утюгу, мощному холодильнику. Т.е. к любому мощному потребителю более 1.5 квт, то эта система не потянет ваши потребности. Только летом. Если же вы сможете без этого обходиться, то система может работать круглый год.

PPS Сделал такую систему не потому, что выпендрежник или денег некуда девать, а потому, что СНТ отключает свет на полгода, а МОЭСК не вмешивается. Судиться не прельщает. Тянуть собственную линию за 1.5 км и ставить свой трансформатор намного дороже. Слушать тарахтящий генератор на природе не хочется. Поэтому и получилось, что получилось.

PPPS Вроде приняли закон о микрогенерации и отдаче в сеть. Весной поинтересуюсь, посчитаю и может быть займусь этим.

Охлаждение элементом Пельтье

Введение

Когда нам не хватает для разгона обычного воздушного кулера, когда мы уже не ищем лёгких путей, потому что они не помогут, тогда мы начинаем обращаться к более эффективным способам охлаждения процессоров. Таким эффективным, бесспорно, является водяное охлаждение, которое достаточно распространено у заграничных оверклокеров, но совсем не получило распространение у нас. Водяное охлаждение по эффективности можно сравнивать только с модулями Пельтье и дорогими кулерами типа Volcano7+. Мы много раз уже говорили про все достоинства и недостатки термоэлектрических модулей, и вот пришло время повстречаться с ними лицом к лицу.

Термоэлектрическая пластинка

AMD Athlon 1133

1200 МГц @ 1.88 В

Модуль Пельтье (он же TEC, термоэлектрическая пластинка, термонасос и т.д.) купить в России несложно. Более того, если вы купите его в онлайн-магазинах, то есть вероятность, что это будет наш, русский модуль. В России мы имеем заводы, изготавливающие и продающие термоэлектрические модули на экспорт. Наиболее известными считаются Санкт-Петербургские заводы Криотерм и Остерм. На заводе Остерм для вас могут изготовить термоэлектрическую пластинку на заказ, нужной мощности и нужных размеров. Как меня уверяли, для использования на компьютерах производитель даже может установить разъём питания PC-Plug на пластинку, но попавший к нам в термоэлектрический модуль имел только два проводка, которые даже зачищать пришлось самому.

Итак, мы уже ни раз говорили про термоэлектрические модули, но быстренько вспомнить основные тезисы не помешает. Термоэлектрические пластины используют эффект Пельтье (обратный эффект термопары_, заключающийся в том, что при протекании тока через два соприкасающихся полупроводника от одного к другому, пластина нагревается с одной стороны и охлаждается с другой, причём перепад температур на обоих сторонах пластины одинаков. За это свойство модуль Пельтье называют термонасосом. Сам по себе он не может охладить процессор. Он просто перекачивает выделяемое тепло от одной обкладки к другой – от процессора к кулеру. Получается, что термоэлектрический насос имеет холодную сторону, где тепло поглощается, и горячую, где выделяется. Причём, как и в случае с обычным насосом, выделяемое тепло должно куда-то отводиться, то есть, его надо охлаждать кулером. Но на горячей стороне термопары выделяется также тепло, образующееся в следствии потерь, так как по ней тоже течёт ток, а законы физики никто не отменял. В итоге кулер должен охладить не только выделяемое процессором тепло, но и тепло, выделяемое самой термоэлектрической пластинкой, так как эффективность у неё не 100% и сам модуль Пельтье сильно греется.

Наш модуль Пельтье мощностью 78 Вт состоял из 128 термопар (8 рядов по 16 термопар в каждом). Он был изготовлен на заводе Остерм в Санкт-Петербурге. В каталоге продукции он именуется как K1-127-2.0/1.5S. Этот модуль имеет размеры 55×55 мм (аккурат с процессор Athlon/Duron), питается он от 12 В постоянного тока и с торцов промазан герметиком, чтобы конденсат, или влага не могли замкнуть цепи внутри пластинки и вывести её из строя. Как видно, конструкция продумана специально для оверклокеров.

Это однокаскадный модуль, его толщина составляет порядка 4 мм, что сопоставимо с толщиной процессора, поэтому крепление кулера, охлаждающего его горячую сторону, надо будет немного подогнуть в случае необходимости. А при инсталляции на сторону, к которой прилегает кулер, придётся не пожалеть термопасты, ибо хороший отвод тепла от горячей стороны позволит эффективнее охладить сам процессор. А площадь соприкосновения пластинки с радиатором, как видите, здесь большая. Намного больше, чем площадь прикосновения ядра процессора и холодной стороны пластинки. Устанавливать обычный кулер, рассчитанный на толщину одного только процессора на термоэлектрическую пластинку намного сложнее. Поэтому лучше всего использовать кулеры, крепящиеся к материнской плате через четыре отверстия вокруг гнезда, а не к самому гнезду. Здесь надо также учитывать, что из-за увеличивающийся толщины охлаждаемого тела (процессор + термопластинка) стальная скоба обычного кулера оказывает слишком большое давление на гнездо процессора и может его повредить, или отломать пластиковые зубчики крепления. Охлаждать термоэлектрический модуль надо хорошим, дорогим кулером, желательно с датчиком вращения вентилятора, потому что если он остановится, то совместно с процессором модуль Пельтье расплавит материнскую плату и сам выйдет из строя.

Про термоэлектрические модули пишут очень много, но в большинстве своём это всего лишь теория. Кто-то обещает понижение температуры процессора ниже нуля градусов по Цельсию, кто-то говорит про высокие скорости разогнанных процессоров, но те же, кто решается использовать термоэлектрические пластины для отвода тепла от процессора, сталкиваются с неожиданными, зачастую очень серьёзными проблемами.

Выбор модуля Пельтье

Прежде всего, как выбирать термоэлектрический модуль? Прежде всего, вам нужно знать ширину и длину процессора, или его ядра. В случае с процессорами, устанавливаемыми в гнездо, вам понадобится модуль, не больший размеров гнезда, но и брать слишком маленький не имеет смысла. Лучше всего, чтобы он был размером с процессор. Если же в компьютере установлен процессор в слот, то вам придётся покупать модуль размером с ядро процессора, хотя можете заказать и размером с картридж – будет стоить дороже. Потом вам понадобится знать мощность вашего процессора. Для некоторых она приведена в таблице мощностей процессоров. Если вашего процессора там нет – узнайте его мощность из документов на сайте производителя. Обычно, эта информация не скрывается от широких масс. Мощность модуля Пельтье должна быть не меньшей мощности вашего процессора, а чтобы почувствовать эффект, она должна быть большей раза в полтора-два. После того, как вы знаете мощность, убедитесь, что термоэлектрическая пластина выдаёт эту мощность именно на 12 Вольтах, а не на 36 и не на 24 В. В компьютере вам легче всего найти 12 В, и ни на какие другие предложения соглашаться нельзя. Если вы знаете разницу температур на холодной и горячей сторонах модуля Пельтье, то можете рассчитать и температуру ядра процессора с этим модулем. Формула здесь очень простая:

Читайте также:
Современные и стильные двери

T=((мощность процессора)+(мощность модуля Пельтье))*(терм. сопротивление кулера)+(темп. воздуха)-(разность температур модуля)

Из этой формулы видно, что чем лучше кулер, тем эффективнее будет охлаждение. По краям обкладок TEC должен быть герметизирован, чтобы никакая влага не могла закоротить его электрические цепи. И было бы неплохо, если бы его провода заканчивались стандартным коннектором PC-Plug. Наш модуль имел следующие данные:

Производитель

Как видно, на блок питания при использовании термоэлектрического модуля ложится дополнительная весьма ощутимая нагрузка, так что этот момент тоже надо учитывать и покупать более мощный блок питания.

Установка модуля Пельтье

Вся мощность, рассеиваемая процессором (имеются в виду процессоры AMD), сосредоточена на небольшой площади – примерно 1 см 2 . Керамические пластины модуля Пельтье имеют низкую теплопроводность, поэтому в охлаждении процессора принимает участие не вся площадь термоэлектрической пластинки, а только та, которая непосредственно соприкасается с ядром процессора. Это вполне естественно, ведь тепло не может распространиться по всей площади холодной стороны модуля из-за низкой теплопроводности его обкладок. И если вы просто так установите модуль Пельтье на процессор, даже смазав его термопастой, вы рискуете сжечь мозг компьютера, ведь мощности тех нескольких термопар, располагающихся над процессором, будет недостаточно для отвода тепла от ядра, а другие участвовать в охлаждении не будут. Решить проблему может только хорошая медная прокладка между ядром процессора и термоэлектрическим модулем. Причём, если вы думаете, что вам будет достаточно установить обычную медную прокладку типа Thermaltak Copper Shim, то глубоко ошибаетесь. Эти прокладки не способны так эффективно распределить тепло по всей поверхности охладителя, как того требуется. Они вообще больше созданы для защиты от повреждения ядра, чем для помощи охлаждению, хотя с этим они тоже помогают справляться. Но для равномерного распределения тепла по поверхности модуля Пельтье вам понадобится медная пластинка, которая будет по размерам равняться модулю Пельтье и станет прокладкой между ядром процессора и холодной стороной TEC. Причём, такая пластинка должна быть ровной, не толстой, но и не слишком тонкой, чтобы равномерно распределять тепло по всему модулю охлаждения. Лучше всего её добыть из медного радиатора на процессор. Удалив рёбра из такого радиатора, мы получим уже отшлифованную с одной стороны ровную пластинку, которую останется лишь немного дополнительно обработать, обильно смазать термопастой и поместить между процессором и термоэлектрической пластиной. Сразу возникает вопрос: почему бы не сделать термоэлектрический модуль с медными обкладками? Я на этот вопрос ответить не в силах.

Использование такой медной прокладки просто необходимо, если размер ядра процессора меньше размера термоэлектрического модуля, а в большинстве случаев это так и есть. Хотя, для процессоров Intel Pentium 4 и Celeron 4 формата Socket-478 она может и не потребоваться, ведь эти процессоры уже имеют встроенный распределитель тепла и они к тому же очень малы в размерах. Но вот в случае с процессорами AMD надо помнить, что медная прокладка ещё больше увеличит высоту, на которую надо устанавливать кулер. И я вам скажу – укрепить его будет не так-то просто.

Тестирование термоэлектрической пластины

Нам, можно сказать, повезло. Мы использовали материнскую плату SOYO DRAGON PLUS, на которую спокойно умещался один из лучших кулеров для процессоров AMD – Swiftech MCX462. Причём, укрепить его было тоже непросто – пружинки крепления к материнской плате были сжаты до предела. И если бы не защита дополнительной медной прокладкой Thermaltake Copper Shim, процессор бы погиб от ёрзающего кулера во время установки. По подсчётам, разогнанный процессор потреблял примерно 67.7 Вт вместо штатных 63 Вт.

Итак, если посмотреть на полученную систему охлаждения с торца, то снизу вверх это будет процессор AMD Athlon, прокладка Thermaltake Copper Shim, не увеличивающая высоту процессора, медная прокладка, добавляющая примерно 4.5 мм к высоте процессора, термоэлектрический модуль Пельтье, добавляющий ещё 4.6 мм к высоте процессора и сам кулер Swiftech MCX-462. То есть, мы увеличили толщину процессора примерно на 9 мм, хотя прокладку можно было бы сделать раза в два тоньше, но всё равно при сегодняшний кулерах с их креплением даже дополнительные 6 мм толщины процессора серьёзно осложнят установку кулера. Обе стороны термоэлектрического модуля и обе стороны медной прокладки обильно смазывались серебряной термопастой. Пластинка подключалась к блоку питания на напряжение 12В и, как полагается, устанавливалась на медную пластинку холодной стороной. Не смотря на дополнительную нагрузку (78 Ватт – всё же не шутка), блок питания выдержал и не давал сбоев. Для сравнения мы протестировали лучшие на сегодняшний день кулеры Swiftech MCX-462, Thermaltake Volcano7+ и систему водяного охлаждения Senfu WaterCooler II. Результаты перед вами:

Как видно, эффект от применения модуля Пельтье оправдывает все затраты и сложности, связанные с его покупкой и установкой. Явное преимущество над двумя самыми лучшими воздушными кулерами и над водяной системой охлаждения. При рассмотрении результатов надо учитывать, что модуль Пельтье охлаждался лучшим воздушным кулером, так что на более дешёвых кулерах он может показать гораздо более низкую производительность.

Выводы

Прежде чем вы пойдёте в ближайший магазин за модулем Пельтье, подумайте ещё раз – сможете ли вы обеспечить его необходимым охлаждением, потянет ли ваш блок питания дополнительную нагрузку, превосходящую сам процессор, сможете ли вы найти медную прокладку и укрепить дорогой кулер на процессор? Последний вопрос наиболее актуален, ведь из доступных на российском рынке кулеров сегодня для охлаждения термоэлектрической пластины можно рекомендовать лишь Volcano 7+, а он крепится скобой к гнезду процессора и без переделки крепления не станет на дополнительные 7-8 мм высоты процессора. Если вы включите термоэлектрическую пластинку без нагрузки, то есть, процессор будет либо вообще не греться, либо греться очень слабо, вы рискуете столкнуться с ситуацией, когда он охладится до точки росы и до образования на нём инея, что может привести к короткому замыканию контактов. Чтобы избежать этого, вам пригодилось бы термореле, отключающее модуль Пельтье, когда температура процессора равна комнатной. Дополнительное оборудование, личный опыт по защите от инея и установке кулера, – всё это рано, или поздно будет у настоящих оверклокеров, решивших охлаждать процессор одним из самых эффективных во всех отношениях способов – термоэлектрической пластиной, или модулем Пельтье.

Читайте также:
Хомут для канализационной трубы: как крепить кронштейн, крепление труб канализации к стене и потолку

Мы благодарим Санкт-Петербургский завод “Остерм” за предоставленные элементы Пельтье.

Михаил Дегтярёв (aka LIKE OFF)
10/06.2002

Элемент пельтье и его принцип работы

В электротехнике используется много разных физических эффектов, процессов и свойств материалов. Достаточно вспомнить магнетизм, емкостные характеристики диэлектриков, сопротивление металлов прохождению тока. Определенный интерес представляют конструкции, содержащие связки двух полупроводников p- и n- типа, физические состояния которых, — под действием электрического тока — меняются. Речь идет об элементах Пельтье, названых так по имени первооткрывателя эффекта.

При подаче электроэнергии в устройство названого типа, место соприкосновения пластин разной энергетической проводимости нагревается или охлаждается в зависимости от направления движения тока. Причем разница температур может быть весьма велика и зависит в большей степени только от поступающего напряжения. Доступность конструкции позволяет изготовить самодельный элемент Пельтье даже в домашних условиях силами заинтересованного любителя электроники из вполне доступных материалов.

Самодельный холодильник с использованием элемента Пельтье:

Ниши применения аппарата довольно широки, от создания разогревающих поверхностей, до систем охлаждения процессоров, напитков или даже создания мини-холодильников. Единственный минус элемента — стоимость исходных материалов. Для миниатюрных конструкций еще можно найти необходимое их количество в компонентах электроники. В случае больших и соответственно мощных аппаратов, цена полупроводников будет дороже.

Теперь что касается выработки тока на биметаллических пластинах. Физическое явление ошибочно относят конкретно к элементам Пельтье, что не совсем точно соответствует истине. Изначально эффект открыт был Т. И. Зеебеком от фамилии которого и получил свое название. В проведенных исследованиях было выявлено, что в двух связанных проводниках из различных металлов (не обязательно p- и n- типа), для которых создается разница температур в отношении каждого, методом нагрева одного и охлаждением другого, возникает электрический ток. Правда, КПД процесса выше у полупроводниковой конструкции, больше напоминающей классический элемент Пельтье.

Генератор на основе эффекта Зеебека:

К сожалению, несмотря на видимые преимущества термических генераторов, производящих электричество и работающих на основе эффекта Зеебека, широкого распространения они не получили. Во всем виновата изначальная цена материалов, от которых непосредственно зависит коэффициент полезного действия на каждую единицу площади устройства. Кроме того, не стоит забывать о разнице температур, резкость которой в природе получить достаточно сложно. Есть конечно варианты, когда генератор названого типа работает на принудительном нагреве одной пластины и охлаждении другой. Причем первое действие производится не только за счет сгорания ископаемого топлива, но и к примеру, при распаде радиоактивных элементов или воздействия солнечных лучей. К сожалению, мощность таких устройств относительно мала по сравнению с энергозатратами, нужными для конечного производства тока. Классические виды генераторов в названом случае более эффективны при весьма солидной экономии топлива, необходимого для работы, или же при слабом действии природных факторов.

Еще один генератор, использующий тепло для питания слабого потребителя:

Краткая история открытия и обоснование физики работы

В основе работы элемента Пельтье находится физический принцип прохождения тока через две соприкасающиеся пластины, изготовленные из материалов с различными уровнями энергии тока прохождения, или другими словами — полупроводниками отличающихся типов. В месте их соединения будет наблюдаться нагрев при подаче тока в одну сторону, и понижение температуры при движении его в обратную.

Открыт эффект был еще в 18 веке Жан-Шарлем Пельтье, который получил его случайно, соединив контакты из висмута и сурьмы от источника тока. Капля воды, находящаяся в точке соприкосновения, превратилась в лед, что и вызвало интерес исследователя. Практическое применение открытие не получило по причине слабой распространенности электротехники в указанный период времени. Вспомнили о нем уже позднее, в век развития микроэлектроники, компонентам которой нужно было миниатюрное охлаждение, желательно без жидкостей и подвижных частей (насосов, вентиляторов и прочих).

Продаваемые сборки элементов Пельтье:

Элемент Пельтье можно создать не только из полупроводников. Но, к сожалению, эффект от использования различных проводящих металлов будет ниже, и практически полностью потеряется за счёт нагревания их в месте соприкосновения и общей теплопроводности материала.

Внутреннее устройство элемента Пельтье:

В общем виде конструкция выглядит как набор электродов кубической формы, изготовленных из полупроводников n- и p-типа. Каждый из них соединен с противоположными проводящими контактами, а все указанные пары соединены между собой последовательно. Причем расположение элементов выполняется так, чтобы связующие металлы между сборками полупроводников одного типа, соприкасались с первой стороной устройства в общем, а второго с противоположной. Сами p- и n- кубы зачастую изготавливаются из теллурида висмута и сплава кремния с германием. Соединительные контакты обычно из меди, алюминия или железа. Здесь главное требование — хорошая теплопроводность. Количество же пар в одной конструкции не ограничивается, и чем их больше, тем эффективнее работает элемент Пельтье. При подаче напряжения на сборку одна ее сторона нагревается, вторая охлаждается.

Принципиальная схема соединений в элементе Пельтье:

Годом нахождения обратного эффекта, выражающегося в выработке тока при охлаждении и нагреве соединенных проводников из разных металлов, принято считать 1821. Открытие было сделано Т. И. Зеебеком, который уже на следующий год опубликовал его в статье, предназначенной для Прусской академии наук, с названием «К вопросу о магнитной поляризации некоторых металлов и руд, возникающей в условиях разности температур».

Хотя согласно его работе, система генерации действует не только при использовании полупроводников, с ними ее КПД намного выше.

Элемент Пельтье, предназначенный целям генерации тока:

Где применяется

Миниатюрность настоящих элементов и относительно низкое их энергопотребление, — вкупе с отсутствием движущихся частей или различных жидкостей, применяемых в целях переноса тепла — предоставляет широкий спектр ниш использования. Сюда входят автомобильные кондиционеры, системы охлаждения микросхем и элементов электроники, мини-холодильники, подставки поддерживающие определенную температуру размещенных сверху емкостей. Кроме названых используется оборудование на элементах Пельтье в специфичных сферах, на подобии ПЦР-амплификаторов, нагревающихся систем вспышки фотоаппаратов, телескопах (для снижения теплового шума) и приемниках излучения инфракрасных устройств.

Реже можно заметить настоящий элемент в роли части конструкции генераторов. Хотя на рынках периодически всплывают аппараты аналогичного класса, к примеру, в виде фонариков, работающих от тепла человеческого тела или слабых машин, производящих электрический ток в целях подзарядки аккумуляторов смартфонов или ноутбуков.

Читайте также:
Что такое паркет: понятие и виды

Напряжение, получаемое на выходе элементов Пельтье:

Достоинства и недостатки

Как уже говорилось ранее, основным плюсом элементов Пельтье служит их миниатюрность, вкупе с отсутствием движущихся частей и агрегатных сред, используемых для передачи температуры. Соответственно, нет различных вентиляторов и насосов, хотя первые и могут использоваться для создания более быстрой конвекции тепла устройства и внешней среды. Кроме названых можно вспомнить простоту конструкции, которую в принципе может повторить каждый, изготовив элемент Пельтье своими руками.

Есть и минусы, основным из которых можно назвать низкий КПД, требующий повышения силы тока для создания действительно значимой разницы температур между горячей и холодной частью.

Эффект охлаждения достигаемый при использовании элементов Пельтье:

Элементы Пельтье своими руками

Получив теоретические знания о функционировании биметаллического устройства, пора перейти к тому, как сделать элемент Пельтье своими руками. Вот только сначала нужно выбрать нишу его применения. Хотя бы потому, что использовать устройство можно для охлаждения чего-либо, нагрева, или в качестве генератора с целью выработки электроэнергии. Последний вариант предпочтительнее по причине ненужности большого количества исходных материалов, хотя бы потому что многовольтное и высокоамперное устройство изготовить в любом случае сложно, особенно дома, ну а для целей подзарядки чего-либо подойдет и меньший его вариант. Хотя лучше купить готовый элемент Пельтье требуемой мощности с торговых интернет-площадок, чем заниматься его изначальным и достаточно невыгодным изготовлением.

Из диодов и транзисторов

Фактически любой элемент Пельтье представляет собой гирлянду из последовательно соединенных диодов, работающих в режиме пробоя. В сущности, любой электронный компонент, пропускающий ток в одном направлении и препятствующий его прохождению в обратном, построен на принципах соединения полупроводников p-n типа. Что в свою очередь наводит на мысли о схожести системы на искомую конструкцию, аналогичную той, которую имеет модуль Пельтье. Если брать во внимание диоды с пластмассовой оболочкой (включая излучающие свет), мешает доступу к самим контактным пластинам из разных металлов только сам корпус устройства.

Вот они, две пластины полупроводника в прозрачном диоде:

Случай транзисторов аналогичен, конечно учитывая то, что в большинстве из них три контакта, два из полупроводника одного типа и один (меньший) другого. Хотя избавиться от корпуса, если он металлический, проще, что довольно распространено у элементов названого типа — достаточно срезать верхнюю крышку и получить доступ к открытым контактным пластинам.

Металлический транзистор со снятой крышкой:

Саму процедуру избавления от корпуса возложим на читателей, с рекомендацией попробовать нагрев, кислоту или механическое снятие преграды. Что касается соединения контактных площадок, здесь некоторые фанаты, судя по имеющейся информации, использовали меднение их верхушек электрическим методом. Впоследствии к подготовленным участкам осуществлялась пайка проводящих контактов.

После получения требуемых металлов, главное, что нужно помнить при их подключении — направление прохождения тока и последовательное соединение, выглядящее, как p-n-p-n-p-n, учитывая тип полупроводников. Кроме того, чем больше будет использовано элементов в конструкции, вне зависимости от их размера, тем и выше КПД получившегося генератора или устройства создающего тепло вместе с холодом.

В окончании

Статья полностью объясняет, как работает элемент Пельтье и можно ли его повторить своими руками, используя только доступные материалы. Целесообразность самоличной сборки в практических целях оставляем на совести интересующихся вопросом. Хотя устройство, сделанное лично, безусловно более полно удовлетворит внутреннего любителя все делать самостоятельно, в отличие от покупного.

Видео по теме

Элементы Пельтье — охлаждение и нагрев

Стандартные термоэлектрические модули имеют взаимообратный принцип действия. В этой статье мы расскажем о применении модулей Пельтье-Зеебека в теплообменных устройствах и приведём пример сборки кулера для воды и базовой охлаждающей системы для воздуха с возможностью обратного запуска (нагрева).

  • Как самостоятельно изготовить кулер для охлаждения воды
  • Как изготовить мини-холодильник, чиллер или кондиционер на теплоэлектрических модулях своими силами
  • Где ещё применяют термоэлектрические модули

Принцип действия термоэлектрических модулей (ТЭМ), используемых для охлаждения, основан на эффекте Зеебека — обратном процессе относительно эффекта Пельтье. Основной элемент — всё тот же ТЭМ, описанный в первой части. При подаче постоянного тока на поле термопар наблюдается разность температур на плоскостях керамической пластины. Это факт, основанный на термодинамическом процессе, который мы описывать не будем (чтобы не утомлять научными выкладками), но покажем, как применить его в быту.

Примечание. Для постройки агрегатов, инструкции к которым приведены ниже, понадобятся базовые практические навыки сборки электрических цепей. Приведённые модели узлов являются примерными и могут быть заменены на аналогичные (или более/менее мощные) по усмотрению мастера.

Как самостоятельно изготовить кулер для охлаждения воды

Догадливый читатель уже понял, что «чудо-ковшик» из первой части можно использовать для охлаждения жидкости, если запустить его «в обратную сторону», подключив постоянный ток.

ТЭМ применены в каждом кулере для воды. Аналог этого заводского прибора вполне можно построить своими руками, при этом работать он будет не хуже. Мы опишем сам принцип работы и схему сборки. Компоновку и варианты исполнения можно подобрать, исходя из собственных потребностей. Например, сделать его переносным или стационарным, интегрированным в кухонную мебель или систему подготовки питьевой воды. Последний вариант оптимален, поскольку охлаждение в системе будет управляемым (по факту подачи питания).

Для этого нам понадобится:

  1. Прямоугольная плоская герметичная ёмкость из нержавейки с размерами 100х100х30 (фляга-теплообменник) с резьбовыми выходами на ½ дюйма по коротким сторонам. Это единственный элемент, изготовление которого лучше заказать мастеру на заводе.
  2. Подводка питьевой воды с фитингом на ½ дюйма (из ёмкости или водопровода).
  3. Блок питания на 10–12 вольт с регулировкой силы тока.
  4. Термоэлектрические модули TEC1–12705 (40×40) — 2 шт.
  5. Провода сечением 0,2 мм.
  6. Термоклей или термопаста.
  7. Ключ на 2 канала (тумблер, кнопка).
  8. Кран, паяльник, припой.

При помощи термоклея фиксируем ТЭМ на флягу. Соединяем провода по соответствующим группам (плюс и минус). Определяем удобное место расположения ключа, учитывая возможность замены при ремонте и доступность при использовании. Включаем его в схему. Присоединяем провода к блоку питания. Проводим испытания цепи.

Внимание! При испытаниях ограничьтесь наблюдением самого факта правильной работы, но не пытайтесь дать максимальную нагрузку насухую — это может привести к выходу из строя ТЭМ (ремонту не подлежит).

Затем соединяем входной фитинг фляги-теплообменника с каналом подачи воды, а выходной — с подводкой (гибкой или жёсткой) к крану.

Заполняем систему водой и выставляем оптимальную силу тока при нужном напоре струи. Оптимальный напор — чуть сильнее самотёка. Для забора прохладной питьевой воды этого будет вполне достаточно. Остальные нюансы — крепёж, длина проводов, расположение — сугубо индивидуальны в каждом отдельном случае.

Читайте также:
Строительство и реконструкция частного жилого дома

Данную базовую систему можно развивать и совершенствовать. Например, установить термостат в теплообменнике и включить его в цепь вместо ключа (тумблера) — подойдёт там, где постоянно нужна вода определённой температуры. Флягу-теплообменник можно выполнить из серебра для дополнительной ионизации воды. Включив в систему повышающий преобразователь постоянного напряжения ЕК-1674, можно сократить расход электроэнергии до минимума.

Расчёт затрат на построение кулера:

Наименование Ед. изм. Кол-во Цена ед./руб. Ст-ть, руб.
Теплообменник из нержавейки (с работой) шт. 1 1000 1000
ТЭМ TEC1-12705 (40×40), 53 ватт шт. 2 300 600
Блок питания шт. 1 300 300
Ключ шт. 1 50 50
Провода 0,2 мм м 5 6 30
Термоклей (термопаста) Radial 2 мл шт. 1 150 150
Трубы, фитинги, подводки 300 300
Итого 2430

В этой системе не задействован ребристый радиатор, т. к. поставленная цель — охлаждение (но не заморозка) небольшого объёма воды (300 мл) — достигается и без него.

Как изготовить мини-холодильник, чиллер или кондиционер на теплоэлектрических модулях своими силами

Более сложная задача — охлаждение воздуха. Если в случае с водой эффективность работы кулера гарантирована разницей плотности сред (вода — воздух), то в случае с однородной средой (воздух — воздух) дело обстоит сложнее. Основная трудность — отвод температуры с горячей стороны поверхности ТЭМ. Точнее — синхронный отвод температуры с обеих поверхностей. Если просто запустить элемент Пельтье-Зеебека, нагретый и охлаждённый воздух смешаются, и температура выровняется.

В замкнутых пространствах малого объёма (до 0,7 м 3 ) вполне применима система охлаждения на основе ТЭМ с двусторонним воздушным отводом. Это позволяет построить новый охлаждающий бокс или дать вторую жизнь старому холодильнику (морозильной камере). Для этого придётся немного усложнить систему, включив в неё пару отводящих вентиляторов обоюдной мощности, реле температуры, ребристый радиатор и использовать более производительные теплоэлектрические модули.

Нам понадобится (для одной базовой точки охлаждения):

  1. ТЭМ ТЕС1–12712 (40Х40), 106 ватт — 1 шт.
  2. Вентилятор RQA 12025HSL 110VAC (или мощнее) — 2 шт.
  3. Радиатор HS 036–100 (100x85x25 мм).
  4. Термостат ТАМ-133–1м (реле температуры с датчиком).
  5. Блок питания постоянного тока 12 вольт, 6 ампер (с регулировкой).
  6. Лист дюралюминия.
  7. Провода, термопаста, крепёж

В готовом боксе, в верхней части охлаждаемой зоны, делаем прямоугольное окно размерами 100х100 мм. Вырезаем две пластины дюралюминия размерами 130х130 мм и 180х180 мм. Закрепляем вентилятор по центру меньшей пластины таки образом, чтобы оставался продух 1 см. Устанавливаем реле температуры внутри бокса. Монтируем меньшую из пластин изнутри бокса (вентилятором внутрь бокса) на шурупы или клёпки через герметик. Наклеиваем ТЭМы на смонтированную пластину и выводим провода. Вырезаем и выгибаем большую пластину так, чтобы она входила в монтажное отверстие, но при этом оставались бортики для фиксации к стенке бокса снаружи. Закрепляем на неё радиатор и второй вентилятор. Обильно смазываем термопастой ТЭМы и монтируем пластину к стенке бокса через герметик.

Внимание! Обязательно должен быть максимальный контакт площади ТЭМ и пластины!

Собираем электрическую цепь. Рекомендуем включить вентиляторы на постоянную максимальную мощность, а силу тока для ТЭМ — через регулятор. Это обеспечит эффективный съём температуры и перемешивание воздуха при работе в разных режимах (не на полную мощность).

Преимущества данной конструкции:

  • бесшумная по сравнению с компрессорными холодильниками работа;
  • отсутствие механизмов и движущихся частей, силы трения (нечему ломаться);
  • не используются жидкие теплоносители (фреон);
  • общая потребляемая мощность около 200 ватт;
  • можно модернизировать конструкцию, варьировать производительность;
  • доступность и ремонтопригодность отдельных агрегатов.
  • возможно появление конденсата на пластинах дюралюминия;
  • наружный блок управления;
  • многие факторы и нюансы работы выявляются опытным путём при использовании;
  • малая область применения.

Расчёт затрат на построение базовой охлаждающей системы холодильника и кондиционера:

Наименование Ед. изм. Кол-во Цена ед./руб. Ст-ть, руб.
ТЭМ ТЕС1-12712 (40Х40), 106 ватт шт. 1 600 600
Вентилятор RQA 12025HSL 110VAC шт. 2 150 300
Дюралюминий 3 мм шт. 1 300 300
Блок питания постоянного тока шт. 1 300 300
Термостат ТАМ-133-1м шт. 1 250 250
Радиатор HS 036-100 шт. 1 220 220
Провода, термопаста, крепёж, припой 300 300
Итого 2270

В принципе, данная конструкция — готовый встраиваемый кондиционер, который можно установить в кабине автомобиля, трактора, в закрытом вольере или будке охраны. Следует лишь продумать конструктивную защиту от атмосферных осадков.

Запас мощности модуля ТЕС1–12712 довольно велик. Амплитуда температур на сторонах элемента может достигать 50 градусов. При температуре воздуха в помещении +27 °С и применении системы жидкостного охлаждения (радиатор + вентилятор), можно извлечь на выходе впечатляющие минус 25 °С! Это позволяет создавать бескомпрессорные и тихие морозильные камеры даже в домашних условиях.

Где ещё применяют термоэлектрические модули

Эффект Пельтье-Зеебека известен с 1840-х годов. Его активно используют и по сей день, благодаря устойчивости законов физики. Термоэлектрическому модулю всегда найдётся место там, где есть избыточная энергия или нужно быстро и бесшумно совершить теплообмен.

Основное применения теплоэлектрических модулей:

  1. Охлаждение микросхем. Вентиляторы, как основной теплообменник, уходят в прошлое. Им на смену идут компактные, бесшумные и практически вечные ТЭМ.
  2. Машиностроение. Даже самый современный ДВС выделяет отработавшие газы из камеры сгорания. Инженеры используют их высокую температуру для получения дополнительной энергии при помощи элементов Пельтье. Собранная энергия подаётся обратно в системы двигателя, но уже в виде постоянного тока, что позволяет экономить топливо.
  3. Бытовая техника. Всё, что описано выше плюс большинство бытовых приборов, работающих на охлаждение или подогрев (кроме компрессорных холодильников).

И маленький секрет напоследок. Наш модуль имеет почти чудесное свойство — обратимость. Это значит, что при перемене полярности постоянного тока на проводах модуля (с помощью переключателя) горячая и холодная поверхность меняются местами. Кулер превращается в нагреватель, холодильник в тепловую камеру (инкубатор), а кондиционер — в маломощный тепловентилятор. Для этого не придётся изменять схему устройства. Достаточно просто поменять полярность.

Этот принцип использован в устройстве под названием рекуператор. Он представляет собой бокс, состоящий из двух изолированных камер, которые сообщаются между собой при помощи вентиляторов. При помощи модулей Пельтье холодный воздух с улицы подогревается энергией, извлечённой из нагретого воздуха, который отводится из помещения. Приспособление позволяет экономить на отоплении дома.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: