Экокожа для мебели, плюсы и минусы, из чего изготавливается материал

Мебель из экокожи: сравним преимущества и недостатки, рассмотрим особенности

Мебель из натуральной кожи дополняет интерьер и делает его дорогим и изысканным. Вариант подходит не всем, так как стоимость кожаной мебели высока. Однако есть выгодная альтернатива – экокожа.

Это современный материал, по внешнему виду и характеристикам приближенный к коже. Выбор его часто оправдан, так как обивка выглядит современно.

Особенности

Этот материал состоит из хлопка, покрытого полиуретаном. Это означает, что при его изготовлении не используется кожа животных. В сегодняшних реалиях эта особенность – одна из ключевых.

Другие характеристики экокожи:

  • на ощупь гладкая;
  • эластичная;
  • износостойкая;
  • плотная;
  • на вид схожа с натуральной кожей.

В отличие от кожзаменителя, который использовался раньше, обладает высокой износостойкостью и не имеет в составе ядовитых химических веществ.

На рынке представлено несколько разновидностей материала по виду:

Перфорированная

Для изготовления на полотне специально проделывается множество отверстий. Так создается определенный рисунок, достигается большая воздухопроницаемость;

Стеганная

Прошивка декоративной строчкой осуществляется по типу стеганного одеяла. Прием используется в оформлении диванов, кресел и другой мебели;

Гладкая

Поверхность не имеет характерных для кожи неровностей.

Наппа

На вид идеально дублирует натуральную кожу;

По типу основы экокожа бывает:

  • на хлопке.
  • на микрофибре.

По способности блестеть:

  • глянцевая.
  • матовая.

Преимущества материала

При выборе обивки для мебели важно понимать, какие преимущества есть у экокожи.

Если потребитель сомневается при принятии решения, следует обратить внимание на плюсы:

  • полная схожесть с натуральным материалом. Нет никаких проблем с окраской экокожи в любой цвет. Производитель не ограничен в возможности нанесения разной текстуры. Кроме того, экокожа не имеет естественных неровностей, тонких участков, которые присущи натуральной коже. Ее можно сделать более плотной, что повышает надежность;
  • устойчива к растяжениям, трению, которое возникает в процессе использования. Мелкие и неглубокие повреждения не будут видны на поверхности;
  • низкая пылеемкость. В отличие от других обивочных материалов экокожа не пропускает пыль. Если она оседает на поверхности, ее легко удалить. Внутрь пыль практически не попадает;
  • за счет полиуретанового слоя ткань не пропускает воду. Пролитая на поверхность мебели жидкость не впитается, если быстро ее вытереть. Это не только дольше сохраняет мебель, но и защищает от пятен и разводов. Сопутствующим преимуществом является экономия на чистке мебели;
  • не покрывается катышками, не собирает на поверхности шерсть, волосы и т.д.;
  • не имеет неприятного запаха;
  • цена в несколько раз ниже, чем за натуральную кожу;
  • гиппоаллергенна.

Совокупность преимуществ часто позволяет сделать выбор в пользу именно этого вида обивки.

Недостатки

Несмотря на очевидные плюсы, экокожа имеет ряд недостатков:

  • если в доме есть домашние животные, то на мебели появятся следы от когтей, царапины, порезы. Убрать или скрыть дефекты будет невозможно, особенно, если поврежден верхний слой и наружу вышел хлопковый. Единственным вариантом станет полная перетяжка мебели;
  • выцветание или появление трещин при воздействии прямых солнечных лучей. Речь идет о материале более низкого качества. Сегодня есть разновидности экокожи, которые значительно устойчивы к воздействию внешней среды;
  • способность быстро нагреваться и охлаждаться. Экокожа в холодном помещении быстро охлаждается, что создает неприятные ощущения, если сесть или лечь на ее поверхность. Аналогичная ситуация с жарой. Если человек в жаркую погоду лег на диван из экокожи, поверхность быстро нагреется. При контакте с кожей человека возникает эффект прилипания, что тоже неприятно;
  • проблемы с выведением сложных загрязнений: чернил, фломастеров, лака для ногтей и т.д. Главная сложность заключается в том, что материал можно мыть и чистить не всеми средствами. Агрессивные моющие средства под запретом, что усложняет процесс чистки.

Сравнение с другими материалами

В обивке мебели применяется множество материалов. Каждый из них имеет преимущества и недостатки. Некоторые похожи по внешнему виду и названию, но обладают разными характеристиками. Сделать правильный в конкретной ситуации выбор возможно лишь сравнив их.

Характеристика/название Экокожа Натуральная кожа Кожзам Алькантара Мебельная ткань
Прочность Высокая при правильной эксплуатации Высокая Низкая. Легко образуются заломы, потертости Высокая. За счет эластичности не рвется, сохраняет форму В зависимости от типа ткани. Существуют материалы с высокой прочностью
Гигроскопичность Высокая за счет хлопкового слоя Высокая Низкая Высокая Высокая, но есть материалы, обладающие водоотталкивающими свойствами
Стоимость Средняя Высокая Низкая Средняя Разная в зависимости от качества и характеристик материала
Экологичность Высокая. Не содержит токсичных веществ, не состоит из кожи животных Нетоксична. Сделана из кожи животных Выделяет токсичные вещества, т.к. имеет в составе поливинилхлорид Нетоксична Высокая
Тактильность Приятная на ощупь, напоминает натуральную Приятная на ощупь Грубая и жесткая Приятная, напоминает замшу Существуют мебельные ткани с приятной текстурой, например, сделанные под бархат
Воздействие внешних факторов В меру устойчив. Способность восстанавливаться после мелких повреждений, но потеря вида от крупных Устойчив Очень восприимчив: трескается от холода и жары, не восстанавливает прежний вид В меру восприимчив. Сложно удалить загрязнения, возникают потертости Очень восприимчив, особенно к загрязнениям. Их трудно удалить, даже если быстро предпринять меры

Выбор материала для мебели зависит от финансовых возможностей заказчика. Однако алькантара, похожая на натуральную замшу, и экокожа сегодня наиболее популярны. Если натуральная кожа дорого стоит, а кожзам имеет наихудшие характеристики, эти два материала занимают золотую середину.

Советы по выбору

Кроме расцветки и дизайна, покупателю следует обратить внимание на качество обивки.

Если заинтересованное лицо рассматривает вариант из экокожи, то при выборе мебели целесообразно обратить внимание на следующие нюансы:

  • обозначение PU показывает толщину внутреннего слоя ткани. Чем оно больше, тем материал плотнее и прочнее. При выборе между PU 70% и 40, следует отдать предпочтение первому варианту;

Экокожа – что это за ткань? Отличие от натуральной кожи. Достоинства и недостатки, виды.

Происхождение экокожи.

Производство экокожи.


Производственный процесс экокожи.

Свойства экокожи.

  • широкий ассортимент цветовой гаммы;
  • стойкость к стиранию;
  • точная имитация фактуры и свойств натуральной кожи;
  • эластичность и мягкость;
  • гибкость и податливость;
  • обеспечивается проницаемостью воздуха и водяных паров;
  • износостойкость и долговечность;
  • прочность материала на разрыв;
  • формоустойчивость;
  • приятные тактильные ощущения;
  • тепло и морозостойкость;
  • экологичность;
  • безопасность для здоровья человека;
  • простой уход и чистка;
  • не имеет посторонних запахов;
  • гуманность и отсутствие затрат на разведение животных;
  • низкая стоимость при высоком качестве;
  • подходит людям с аллергией на кожу и мех животных;
  • устойчива к морозам, перепадам температур и ультрафиолетовым лучам.
  • одежда из бюджетной экокожи неудобна в носке в зимнее время;
  • экокожа легко пачкается, а пятна, например от маркера, удалить сложно;
  • за глубокими порезами и царапинами видна тканная основа, которую не удастся заклеить и скрыть.
  • иногда, натуральная кожа вызывает аллергию, что исключено в случае с ее эко-аналогом;
  • натуральная кожа и экокожа ведут себя по-разному, если их использовать в качестве мебельной обивки. Ни диване из экокожи человек будет меньше потеть, хотя и та и другая ткань теплые на ощупь;
  • визуально вещи, выполненные из экокожи, смотрятся ярче и красивее, т.к. краска на них садится намного лучше;
  • с изнаночной стороны экокожу с натуральной кожей спутать невозможно, т.к. у натуральной – с изнанки ворсистая поверхность, а у эко-аналога – текстильная основа;
  • главным отличием экокожи от натуральной является посветлевшее место сгиба при деформации. У натурального материала при сгибе цвет не меняется;
  • на ощупь экокожа намного приятнее натуральной.

Виды экокожи.

  • Экокожа на микрофибре. В качестве основы выступают волокна с полиэстеровым покрытием. Данный материал имеет пористую структуру, обладает влагоотталкивающими свойствами, а самое главное, является дышащим.


Внешний вид экокожи на микрофибре.

  • PU кожа. Данная разновидность экокожи абсолютно идентична с характеристиками натуральной, а так же не уступает ей и по качеству. Включает в себя три слоя: хлопковую ткань, отбракованную натуральную кожу и тонкое, высокосортное напыление из полиуретана.


Внешний вид PU-кожи

  • ПВХ-кожа. Плотное, эластичное, пористое, жесткое полотно. Изготавливается методом пропитывания волокнистой основы полимерными составами и нанесением слоя ПВХ.


Внешний вид ПВХ-кожи

  • Перфорированная экокожа. Отличительной особенностью являются мелкие отверстия, образующие рисунок на полотне.


Внешний вид перфорированной кожи.

  • Самоклеящаяся. Имеет клеевую основу, которая придает прочность и увеличивает толщину материала.


Внешний вид самоклеющейся кожи

  • Стрейч-кожа. Тончайший и эластичный материал, который тянется без образования трещин и повреждений. Включает в себя три слоя: хлопковая ткань, на которую с двух сторон нанесено полимерное покрытие.


Внешний вид стрейч-кожи.

Что шьют из экокожи?

  • верхнюю одежду (куртки, плащи, пальто);
  • женскую одежду (платья, юбки, легинцы, шорты, сарафаны, рубашки);
  • автомобильные чехлы;
  • обувь (босоножки, ботинки, сапоги, туфли);
  • мебельные обивки;
  • сумки, рюкзаки, кошельки;
  • перчатки, ремни.

Рекомендации по уходу за экокожей

  • для удаления пыли или грязи с поверхности изделия, лучше всего использовать салфетки из микрофибры, предварительно смоченные в воде. Но после очистки, поверхность изделия следует вытереть насухо;
  • ни в коем случае для очистки поверхности изделия от загрязнений не использовать жесткие щетки, т.к. поверхность экокожи легко можно повредить;
  • нельзя сушить вещи из экокожи на батарее или под прямыми лучами солнца;
  • средства для ухода за искусственной кожей можно использовать и такие, который подходят для натуральной;
  • мыть экокожу можно в прохладной воде, но только детским или хозяйственным мылом;
  • для удаления грязных пятен, которые нельзя вывести при помощи влажной салфетки, разрешается использовать нашатырный спирт, лимон, перекись водорода, раствор медицинского спирта, разведенного до концентрации 50%;
  • мебельную обивку и обувь из экокожи лучше защищать пропитками для натуральной кожи для более длительного сохранения первоначального вида;
  • изделия из экокожи можно отдавать в химчистку.

Отзывы покупателей

Интересное по теме:

Физика. 11 класс

Конспект урока

Физика, 11 кл

Урок 5. Электромагнитная индукция

Перечень вопросов, рассматриваемых на этом уроке

  1. Знакомство с явлением электромагнитной индукции.
  2. Изучение законов, описывающих явление электромагнитной индукции.
  3. Решение задач, практическое использование электромагнитной индукции.

Глоссарий по теме

Явление электромагнитной индукции заключается в возникновении электрического тока в проводящем контуре, который либо покоится в переменном во времени магнитном поле, либо движется в постоянном магнитном поле таким образом, что число линий магнитной индукции, пронизывающих поверхность, ограниченную этим контуром, меняется со временем. Магнитный поток Ф – графически величина пропорциональная числу линий магнитной индукции, пронизывающих поверхность площадью S.

Единица измерения магнитного потока: магнитный поток в один вебер создаётся однородным магнитным полем с индукцией 1 Тл через поверхность площадью 1 м 2 , расположенную перпендикулярно вектору магнитной индукции.

Правило Ленца: возникающий в замкнутом контуре индукционный ток своим магнитным полем противодействует тому изменению магнитного потока, которым он вызван.

Сила индукционного тока пропорциональна скорости изменения магнитного потока через поверхность, ограниченную контуром.

ЭДС индукции в замкнутом контуре равна по модулю скорости изменения магнитного потока через поверхность, ограниченную контуром:

Основная и дополнительная литература по теме:

Мякишев Г.Я., Буховцев Б.Б., Чаругин В.М. Физика.10 класс. Учебник для общеобразовательных организаций М.: Просвещение, 2017стр. 107-112

Рымкевич А.П. Сборник задач по физике. 10-11класс. – М.: Дрофа,2009. Стр. 28-29

ЕГЭ 2017. Физика. 1000 задач с ответами и решениями. Демидова М.Ю., Грибов В.А., Гиголо А.И. М.: Экзамен, 2017.

Теоретический материал для самостоятельного изучения

Электрические и магнитные поля создаются одними и теми же источниками – электрическими зарядами. Отсюда естественнее было предположить, что между этими полями имеется связь. Экспериментально это предположение было доказано в 1831 г. английским учёным М. Фарадеем, открывшим явление электромагнитной индукции. Все опыты Фарадея по изучению явления электромагнитной индукции объединял один признак – магнитный поток пронизывающий замкнутый контур проводника менялся. При всяком изменении магнитного потока через замкнутый контур, в нем возникал индукционный ток.

Сила индукционного тока пропорциональна ЭДС индукции.

Направление индукционного тока менялось в зависимости от направления движения магнита относительно катушки. Это направление тока, можно найти используя правило Ленца.

М. Фарадеем экспериментально было установлено, что при изменении магнитного потока, в проводящем контуре возникает электродвижущая сила индукции, которая равна скорости изменения магнитного потока через поверхность, ограниченную контуром, взятой со знаком минус:

Знак минус в этой формуле отражает правило Ленца.

Закон электромагнитной индукции формулируется для ЭДС индукции.

ЭДС индукции в замкнутом контуре равна по модулю скорости изменения магнитного потока через поверхность, ограниченную контуром:

ЭДС индукции в движущихся проводниках:

Джеймс Максвелл в 1860 году сделал вывод что переменное со временем магнитное поле всегда порождает вихревое электрическое поле, а переменное во времени электрическое поле в свою очередь порождает магнитное поле. Следовательно, существует единая теория электромагнитного поля.

Разбор типового контрольного задания

На рисунке изображен момент демонстрационного эксперимента по проверке правила Ленца, когда все предметы неподвижны. Южный полюс магнита находится внутри сплошного металлического кольца, но не касается его. Коромысло с металлическими кольцами может свободно вращаться вокруг вертикальной опоры. При выдвижении магнита из кольца влево кольцо будет

1) оставаться неподвижным

2) перемещаться вправо

3) совершать колебания

4) перемещаться вслед за магнитом

При выдвижении магнита из кольца влево магнитный поток от магнита через кольцо будет уменьшаться. В замкнутом кольце возникает индукционный ток. Направление этого тока по правилу Ленца такое, что создаваемое им магнитное поле препятствует изменению магнитного потока. Так как коромысло вокруг вертикальной оси может свободно вращаться, и магнитное поле магнита неоднородно, коромысло под действием сил Ампера начнёт двигаться так, чтобы препятствовать изменению магнитного потока. Следовательно, коромысло начнёт перемещаться вслед за магнитом.

Ответ:4) перемещаться вслед за магнитом.

Проводник МN с длиной активной части 1м и сопротивлением 2 Ом находится в однородном магнитном поле индукцией 0,2 Тл. Проводник подключён к источнику тока с ЭДС 4 В (внутренним сопротивлением источника и сопротивлением подводящих проводников пренебречь). Какова сила тока в проводнике, если:

№1 проводник покоится;

№2 проводник движется в право со скоростью 6 м/с.

№1: Ток в неподвижном проводнике течёт от N к М

v = 0; Закон Ома для полной цепи I = Ɛ/R = 4В/2Ом = 2А

№2: Если проводник движется в право со скоростью 6 м/с, то по правилу правой руки индукционный ток потечёт от точки N к точке М:

Закон электромагнитной индукции (закон Фарадея) – формула, физический смысл

Если за малое время ∆t магнитный поток поменялся на ∆Ф, то скорость изменения магнитного потока равна ΔΦΔt… Поэтому утверждение, которое вытекает непосредственно из опыта, можно сформулировать так:

Сила индукционного тока пропорциональная скорости изменения магнитного потока через поверхность, ограниченную контуром:

Известно, что в цепи появляется электрический ток в том случае, когда на свободные заряды проводника действуют сторонние силы. Работу этих сил при перемещении единичного положительного заряда вдоль замкнутого контура называют электродвижущей силой. Следовательно, при изменении магнитного потока через поверхность, ограниченную контуров, появляются сторонние силы, действие которых характеризуется ЭДС, называемой ЭДС индукции. Обозначают ее как εi.

Согласно закону Ома для замкнутой цепи:

Сопротивление проводника не зависит от изменения магнитного потока. Следовательно, сила индукционного тока пропорциональна скорости изменения магнитного потока только потому, что ЭДС индукции тоже пропорциональна этой скорости изменения потока.

Закон электромагнитной индукции

ЭДС индукции в замкнутом контуре равна по модулю скорости изменения магнитного потока через поверхность, ограниченную контуром.

Закон электромагнитной индукции формулируется именно для ЭДС, а не для силы тока. При такой формулировке закон выражает сущность явления, не зависящую от свойств проводников, в которых возникает индукционный ток.

Явление электромагнитной индукции

Электромагнитная индукция – явление возникновения тока в замкнутом проводящем контуре при изменении магнитного потока, пронизывающего его.

Явление электромагнитной индукции было открыто М. Фарадеем.

  • На одну непроводящую основу были намотаны две катушки: витки первой катушки были расположены между витками второй. Витки одной катушки были замкнуты на гальванометр, а второй – подключены к источнику тока. При замыкании ключа и протекании тока по второй катушке в первой возникал импульс тока. При размыкании ключа также наблюдался импульс тока, но ток через гальванометр тек в противоположном направлении.
  • Первая катушка была подключена к источнику тока, вторая, подключенная к гальванометру, перемещалась относительно нее. При приближении или удалении катушки фиксировался ток.
  • Катушка замкнута на гальванометр, а магнит движется – вдвигается (выдвигается) – относительно катушки.

Опыты показали, что индукционный ток возникает только при изменении линий магнитной индукции. Направление тока будет различно при увеличении числа линий и при их уменьшении.

Сила индукционного тока зависит от скорости изменения магнитного потока. Может изменяться само поле, или контур может перемещаться в неоднородном магнитном поле.

Объяснения возникновения индукционного тока

Ток в цепи может существовать, когда на свободные заряды действуют сторонние силы. Работа этих сил по перемещению единичного положительного заряда вдоль замкнутого контура равна ЭДС. Значит, при изменении числа магнитных линий через поверхность, ограниченную контуром, в нем появляется ЭДС, которую называют ЭДС индукции.

Электроны в неподвижном проводнике могут приводиться в движение только электрическим полем. Это электрическое поле порождается изменяющимся во времени магнитным полем. Его называют вихревым электрическим полем. Представление о вихревом электрическом поле было введено в физику великим английским физиком Дж. Максвеллом в 1861 году.

Свойства вихревого электрического поля:

  • источник – переменное магнитное поле;
  • обнаруживается по действию на заряд;
  • не является потенциальным;
  • линии поля замкнутые.

Работа этого поля при перемещении единичного положительного заряда по замкнутому контуру равна ЭДС индукции в неподвижном проводнике.

Николас Джозеф Каллан изобрел индукционную катушку

Ученые занимавшиеся изучением электричества подхватили идею ирландского священника Николас Джозеф Каллан (1799-1864) по изменению взаимно связанной индукции.

После посвящения в сан Каллан изучал физику в Римском университете, который окончил в 1826 году. По возвращении в Ирландию он был назначен профессором естественной философии (которую мы теперь называем физикой) в Колледже Святого Патрика в Мейнуте, недалеко от Дублина, где он основал свою лабораторию. В 1836 году Каллан построил первое устройство, способное эффективно эксплуатировать взаимную связь электричества. Его устройство состояло из двух катушек: с малым числом витков и большим из хорошо изолированных проводов, намотанных на железный сердечник. Резкое прекращение тока первой катушки вызывало высокое напряжение во второй (возможно, до нескольких десятков киловольт).

В 1854-1855 годах Каллан разработал электрохимические ячейки, которые собрал в большие батареи для питания электромагнитов. Каллан также построил ранние электрические двигатели и в 1853 году запатентовал гальванический процесс, направленный на предотвращение окисления железа. Тем не менее он не пренебрегал своим религиозным призванием, написав около 20 книг на подобные темы. Каллан построил свое устройство, потому что ему нужны были высокие напряжения в его экспериментах, трансформируя их из низкого напряжения, обеспечиваемого его батареями, но он не смог внедрить изобретения в широкую эксплуатацию.

Магнитный поток

Магнитным потоком через площадь ​( S )​ контура называют скалярную физическую величину, равную произведению модуля вектора магнитной индукции ​( B )​, площади поверхности ​( S )​, пронизываемой данным потоком, и косинуса угла ​( alpha )​ между направлением вектора магнитной индукции и вектора нормали (перпендикуляра к плоскости данной поверхности):

Обозначение – ​( Phi )​, единица измерения в СИ – вебер (Вб).

Магнитный поток в 1 вебер создается однородным магнитным полем с индукцией 1 Тл через поверхность площадью 1 м2, расположенную перпендикулярно вектору магнитной индукции:

Магнитный поток можно наглядно представить как величину, пропорциональную числу магнитных линий, проходящих через данную площадь.

В зависимости от угла ​( alpha )​ магнитный поток может быть положительным (( alpha ) 90°). Если ( alpha ) = 90°, то магнитный поток равен 0.

Изменить магнитный поток можно меняя площадь контура, модуль индукции поля или расположение контура в магнитном поле (поворачивая его).

В случае неоднородного магнитного поля и неплоского контура магнитный поток находят как сумму магнитных потоков, пронизывающих площадь каждого из участков, на которые можно разбить данную поверхность.

Взаимодействие магнита с контуром

В качестве наглядного примера взаимодействия магнита и контура в сделанную из медного провода катушку помещают магнит. Если магнит медленно вставлять внутрь катушки, происходит постепенное увеличение пересекающего ее витки создаваемого магнитом потока. Появляющееся вследствие такой манипуляции упорядоченное движение частиц в катушке будет направлено по часовой стрелке, создавая собственное магнитное поле, ослабляющее поле магнита, отталкивая его тем самым от катушки.

Если магнит отдаляют от контура, его поток уменьшается, а заряженные частицы начинают двигаться против часовой стрелки, вследствие чего возникающая совокупность силовых магнитных линий будет притягивать магнит.

На заметку. В случае с незамкнутым (открытым) контуром: металлическим или алюминиевым кольцом, имеющим прорезь; катушкой, витки которой не замкнуты через амперметр, источник питания, данная закономерность, как и правило Ленца, не работает.

Закон электромагнитной индукции Фарадея

Закон электромагнитной индукции (закон Фарадея):

ЭДС индукции в замкнутом контуре равна и противоположна по знаку скорости изменения магнитного потока через поверхность, ограниченную контуром:

Знак «–» в формуле позволяет учесть направление индукционного тока. Индукционный ток в замкнутом контуре имеет всегда такое направление, чтобы магнитный поток поля, созданного этим током сквозь поверхность, ограниченную контуром, уменьшал бы те изменения поля, которые вызвали появление индукционного тока.

Если контур состоит из ​( N )​ витков, то ЭДС индукции:

Сила индукционного тока в замкнутом проводящем контуре с сопротивлением ​( R )​:

При движении проводника длиной ​( l )​ со скоростью ​( v )​ в постоянном однородном магнитном поле с индукцией ​( vec )​ ЭДС электромагнитной индукции равна:

где ​( alpha )​ – угол между векторами ​( vec )​ и ( vec ).

Возникновение ЭДС индукции в движущемся в магнитном поле проводнике объясняется действием силы Лоренца на свободные заряды в движущихся проводниках. Сила Лоренца играет в этом случае роль сторонней силы.

Движущийся в магнитном поле проводник, по которому протекает индукционный ток, испытывает магнитное торможение. Полная работа силы Лоренца равна нулю.

Количество теплоты в контуре выделяется либо за счет работы внешней силы, которая поддерживает скорость проводника неизменной, либо за счет уменьшения кинетической энергии проводника.

Важно! Изменение магнитного потока, пронизывающего замкнутый контур, может происходить по двум причинам:

  • магнитный поток изменяется вследствие перемещения контура или его частей в постоянном во времени магнитном поле. Это случай, когда проводники, а вместе с ними и свободные носители заряда, движутся в магнитном поле;
  • вторая причина изменения магнитного потока, пронизывающего контур, – изменение во времени магнитного поля при неподвижном контуре. В этом случае возникновение ЭДС индукции уже нельзя объяснить действием силы Лоренца. Явление электромагнитной индукции в неподвижных проводниках, возникающее при изменении окружающего магнитного поля, также описывается формулой Фарадея.

Таким образом, явления индукции в движущихся и неподвижных проводниках протекают одинаково, но физическая причина возникновения индукционного тока оказывается в этих двух случаях различной:

  • в случае движущихся проводников ЭДС индукции обусловлена силой Лоренца;
  • в случае неподвижных проводников ЭДС индукции является следствием действия на свободные заряды вихревого электрического поля, возникающего при изменении магнитного поля.

fizika / Физика билеты на экзамены / б (7) / 7

7..Явление электромагнитной индукции. Закон Фарадея. Правило Ленца.

Электромагнитная индукция — явление возникновения электрического тока в замкнутом контуре при изменении магнитного потока, проходящего через него.

Электромагнитная индукция была открыта Майклом Фарадеем 29 августа 1831 года. Он обнаружил, что электродвижущая сила, возникающая в замкнутом проводящем контуре, пропорциональна скорости изменения магнитного потока через поверхность, ограниченную этим контуром. Величина электродвижущей силы (ЭДС) не зависит от того, что является причиной изменения потока — изменение самого магнитного поля или движение контура (или его части) в магнитном поле. Электрический ток,

Согласно закону электромагнитной индукции Фарадея (в СИ):

— электродвижущая сила, действующая вдоль произвольно выбранного контура,

— магнитный поток через поверхность, натянутую на этот контур.

Знак «минус» в формуле отражает правило Ленца, названное так по имени русского физика Э. Х. Ленца:

Индукционный ток, возникающий в замкнутом проводящем контуре, имеет такое направление, что создаваемое им магнитное поле противодействует тому изменению магнитного потока, которым был вызван данный ток.

Для катушки, находящейся в переменном магнитном поле, закон Фарадея можно записать следующим образом:

— электродвижущая сила,

— число витков,

— магнитный поток через один виток,

— потокосцепление катушки.

Правило Ленца

Правило Ленца определяет направление индукционного тока и гласит:

Индукционный ток всегда имеет такое направление, что он ослабляет действие причины, возбуждающей этот ток.

Физическая суть правила

Согласно закону электромагнитной индукции Фарадея при изменении магнитного потока , пронизывающего электрический контур, в нём возбуждается ток, называемый индукционным. Величина электродвижущей силы, ответственной за этот ток, определяется уравнением [1] :

где знак «минус» означает, что ЭДС индукции действует так, что индукционный ток препятствует изменению потока. Этот факт и отражён в правиле Ленца.

Правило Ленца носит обобщённый характер и справедливо в различных физических ситуациях, которые могут отличаться конкретным физическим механизмом возбуждения индукционного тока. Так, если изменение магнитного потока вызвано изменением площади контура (например, за счёт движения одной из сторон прямоугольного контура), то индукционный ток возбуждается силой Лоренца, действующей на электроны перемещаемого проводника в постоянном магнитном поле. Если же изменение магнитного потока связано с изменение величины внешнего магнитного поля, то индукционный ток возбуждается вихревым электрическим полем, появляющимся при изменении магнитного поля. Однако в обоих случаях индукционный ток направлен так, чтобы скомпенсировать изменение потока магнитного поля через контур.

Если внешнее магнитное поле, пронизывающее неподвижный электрический контур, создаётся током, текущим в другом контуре, то индукционный ток может оказаться направлен как в том же направлении, что и внешний, так и в противоположном: это зависит от того, уменьшается или увеличивается внешний ток. Если внешний ток увеличивается, то растёт создаваемое им магнитное поле и его поток, что приводит к появлению индукционного тока, уменьшающего это увеличение. В этом случае индукционный ток направлен в сторону, противоположную основному. В обратном случае, когда внешний ток уменьшается со временем, уменьшение магнитного потока приводит к возбуждению индукционного тока, стремящегося увеличить поток, и этот ток направлен в ту же сторону, что и внешний ток.

Тут вы можете оставить комментарий к выбранному абзацу или сообщить об ошибке.

Что такое электромагнитная индукция?

Майкл Фарадей стал первооткрывателем такого явления как электромагнитная индукция. Им было введено понятие «вектор индукции», который показывает направление потока. Эта физическая величина, которая равна произведению модуля самого вектора, проходящего через площадь и косинус этого угла. Данное выражение показывает связь между электрическим и магнитным явлениями.

Само это явление было обнаружено ученым в 1831 году. В статье будет рассказано о явлении электромагнитной индукции, как используется это явление в современной электротехнике, а также как рассчитать ее физические величины. Дополнением служат два видеоролика и одна скачиваемая научно-популярная статья по выбранной тематики.

Электромагнитная индукция

Магнитный поток. В однородном магнитном поле, модуль вектора индукции которого равен В, помещен плоский замкнутый контур площадью S. Нормаль n к плоскости контура составляет угол a с направлением вектора магнитной индукции В. Магнитным потоком через поверхность называется величина Ф, определяемая соотношением: Ф = В·S·cos a. Единица измерения магнитного потока в систем СИ – 1 Вебер (1 Вб). Электромагнитная индукция. Явление электромагнитной индукции обнаружено в 1831 г. Фарадеем. Оно выражает взаимосвязь электрических и магнитных явлений. Рассмотрим некоторые экспериментальные факты.

Рамку, замкнутую на гальванометр, помещают в однородное магнитное поле и вращают. В рамке возникает электрический ток. Если же рамка движется поступательно, не пересекая силовых линий, то ток в ней не возникает. Рамка движется в неоднородном магнитном поле. Число линий индукции, пересекающих рамку, изменяется. В рамке возникает электрический ток. Ток, возникающий в контуре при изменении магнитного потока, называют индукционным током.

Явление электромагнитной индукции было открыто Майклом Фарадеем в 1831 г. Он опытным путем установил, что при изменении магнитного поля и и утри замкнутого проводящего контура в нем возникнет электрический ток, который называют индукционным током.

Вы знаете, что условием существования электрического тока в замкнутом контуре является наличие электродвижущей силы, поддерживающей разность потенциалов. Следовательно, при изменении магнитного потока, пронизывающего замкнутый контур, в нем возникает ЭДС, которую называют ЭДС индукции (ei). Явление возникновения ЭДС в контуре при изменении магнитного потока, пронизывающего контур, называется электромагнитной индукцией. Если контур замкнут, то ЭДС индукции проявляется в возникновении электрического индукционного тока

где R- сопротивление контура.

Если контур разомкнут, то на концах проводника возникает разность потенциалов, равная ei. Направление индукционного тока в контуре определяется правилом Ленца – Индукционный ток направлен так, чтобы своим магнитным полем противодействовать изменению магнитного потока, которым он вызван.

Направление индукционного тока определяется следующим образом:

  • установить направление внешнего магнитного поля В.
  • определить увеличивается или уменьшается поток вектора магнитной индукции внешнего поля.
  • по правилу Ленца указать направление вектора магнитной индукции индукционного тока Вi.
  • по правилу правого винта определить направление индукционного тока в контуре.

ЭДС индукции в движущемся проводнике. Пусть проводник длиной L перемещается со скоростью V в однородном магнитном поле, пересекая силовые линии. Вместе с проводником движутся заряды, находящиеся в проводнике. На движущийся в магнитном поле заряд действует сила Лоренца. Свободные электроны смещаются к одному концу проводника, а на другом остаются нескомпенсированные положительные заряды. Возникает разность потенциалов, которая и представляет собой ЭДС индукции ei. Ее величину можно определить, рассчитав работу, совершаемую силой Лоренца при перемещении заряда вдоль проводника:

Отсюда следует, что ei = B·V·L·sin a.

Самоиндукция является частным случаем разнообразных проявлений электромагнитной индукции. Рассмотрим контур, подключенный к источнику тока. По контуру протекает электрический ток I. Этот ток создает в окружающем пространстве магнитное поле. В результате контур пронизывается собственным магнитным потоком Ф. Очевидно, что собственный магнитный поток пропорционален току в контуре, создавшему магнитной поле:

Коэффициент пропорциональности L называется индуктивностью контура. Индуктивность зависит от размеров, формы проводника, магнитных свойств среды. Единица измерения индуктивности в системе СИ – 1 Генри (Гн).

Из закона электромагнитной индукции следует, что eiс = dФс/dt.

Если L = const, то eiс= – L·dI/dt.

Электродвижущая сила, наведенная в проводе

При движении провода с постоянной скоростью ν с той же скоростью будут, перемещаться свободные электроны и положительные ионы провода. Если провод движется в однородном поле перпендикулярно магнитным линиям, то на каждую заряженную частицу будет действовать электромагнитная сила,направление которой определяется правилом левой руки. Под действием этих сил электроны будут перемещаться на один конец провода, создавая на нем отрицательный заряд, а на другом конце провода недостаток электронов вызовет положительный заряд. Разделение зарядов прекратится, если электромагнитные силы уравновесятся электрическими силами притяжения разноименных зарядов. Так, в результате работы электромагнитных сил в проводнике возникает э. д. с, которую называют э. д. с. электромагнитной индукции, а само явление — электромагнитной индукцией. В этом случае механическая энергия, затраченная на движение проводника, преобразуется в электрическую.

Явление электромагнитной индукции было открыто в .1831 г. английским физиком М. Фарадеем. На концах незамкнутого провода напряжение U равно э. д. с. электромагнитной индукции Е, таким образом (1-3);

Следовательно, наведённая (индуктированная) в проводе э. д. с. электромагнитной индукции пропорциональна величине магнитной индукции поля, в котором движется проводник, длине провода и скорости его движения в направлении, перпендикулярном магнитным линиям. Это первая формулировка закона электромагнитной индукции. Направление наведенной э. д. с. определяется правилом правой руки. Ладонь правой руки располагают так, чтобы магнитные линии входили в нее, отогнутый под прямым углом большой палец совмещают с направлением движения проводника, тогда вытянутые четыре пальца укажут направление индуктированной э. д. с.

Что такое индицирование

Индуцирование Э.Д.С. При пересечении проводником силовых линий магнитного поля в нем возникает или, как говорят, индуцируется э. д. с. Это явление называется электромагнитной индукцией. Возникновение э.д.с. объясняется действием сил магнитного поля на находящиеся в проводниках свободные электроны. Свободные электроны под влиянием этих сил начнут двигаться вдоль проводника. В результате этого движения на одном конце проводника накопятся свободные электроны и возникнет отрицательный электрический заряд, а на другом конце ввиду недостатка электронов появится положительный заряд.

Такое разделение электрических зарядов при движении проводника в магнитном поле будет происходить до тех пор, пока электромагнитные силы не уравновесятся силами электрического поля, возникающего в проводнике в результате появления на его концах разноименных электрических зарядов. Разность потенциалов на концах проводника численно равна индуцированной в проводнике э.д.с. Индуцирование э.д.с. в проводнике происходит независимо от того, включен ли он в какую-либо электрическую цепь или нет. Если присоединить концы этого проводника к какому-либо приемнику электрической энергии, то под влиянием разности потенциалов на концах проводника по замкнутой цепи потечет электрический ток.

Значение индуцированной э. д. с. определяется законом электромагнитной индукции Фарадея. Он формулируется следующим образом. Индуцированная э. д. с. е прямо пропорциональна индукции магнитного поля В, длине проводника l и скорости его перемещения ? в направлении, перпендикулярном силовым линиям поля,

Если проводник движется под углом ? к направлению поля, то

Если проводник перемещается вдоль силовых линий поля, т. е. как бы скользит по ним, то э.д.с. в нем не возникает.

Рис. 51. Индуцирование э.д.с. в проводнике при перемещении его в магнитном поле

Направление индуцированной э. д. с. определяют правилом правой руки. Если ладонь правой руки держать так, чтобы в нее входили магнитные силовые линии поля, а отогнутый большой палец совместить с направлением движения проводника (т. е. направлением его скорости ?), то вытянутые четыре пальца укажут направление индуцированной э.д.с. е (рис. 51, б). Пользуясь этим правилом, легко убедиться в том, что при изменении направления движения проводника будет изменяться и направление индуцированной э.д.с.

Индуцировать э.д.с. в проводниках можно и не перемещая их в магнитном поле. Для этого необходимо перемещать само магнитное поле или изменять тем или иным путем магнитный поток, охватываемый витком, катушкой или каким-либо другим замкнутым контуром. Индуцированная таким образом э.д.с. определяется согласно закону электромагнитной индукции Максвелла: э.д.с, индуцированная в замкнутом контуре, равна скорости изменения магнитного потока, пронизывающего этот контур, т. е.

?Ф = Ф1— Ф2 — изменение магнитного потока, пронизывающего контур (от значения Ф1, до значения Ф2);

?t — промежуток времени (от момента t1 до момента t2), в течение которого происходит указанное изменение потока.

Иными словами, чем быстрее изменяется магнитный поток, пронизывающий замкнутый контур, тем больше индуцированная э.д.с.
Каждый виток можно рассматривать как некоторый замкнутый контур. Поэтому индуцированная в нем э.д.с. определяется по формуле (51). Э.д.с, индуцированная в катушке с числом витков ?, если все ее витки пронизываются одним и тем же потоком,

Отдельные витки катушки могут пронизываться различными потоками (рис. 52, в), т. е. могут быть сцеплены с различным числом силовых магнитных линий. Алгебраическая сумма потоков, сцепленных со всеми витками катушки, называется ее потокосцеплением ?. Например, для катушки, показанной на рис. 52, в,

Индуцированная э.д.с. в этом случае

где ??— изменение потокосцепления ? за время ?t.

Следовательно, в общем случае индуцированная э.д.с. равна скорости изменения потокосцепления катушки.

Правило Ленца. Направление индуцированной э.д.с. определяется правилом Ленца. Его формулируют следующим образом: индуцированная э.д.с. имеет такое направление, при котором созданный ею ток противодействует причине, вызвавшей появление э.д.с, т.е. противодействует изменению магнитного потока. Знак «минус» в формулах (51), (51’) и (52) выражает существо правила Ленца: если изменение потока Ф или потокосцепления ? положительно (например, увеличивается), то э.д.с. е отрицательна, т. е. созданный ею ток будет уменьшать Ф или ?.

Правило Ленца может быть проиллюстрировано следующими примерами. При опускании магнита (или электромагнита) внутрь катушки (рис. 53, а) э.д.с, индуцированная в катушке, имеет такое направление, при котором созданное током катушки магнитное поле будет противодействовать опусканию магнита. При удалении же магнита из катушки (рис. 53, б) индуцированная в ней э.д.с. создает ток, направленный так, что магнитное поле катушки препятствует удалению магнита.
Если изменять ток i1 в проводнике АБ, например замыкая и размыкая электрическую цепь, в которую он включен, то в расположенном параллельно ему проводнике ВГ индуцируется э.д.с. ем.

При увеличении тока i1 э. д. с. ем и ток i2 в проводнике ВГ будут направлены против тока i1. При уменьшении же тока i1 э. д. с. ем и ток i2 будут направлены в ту же сторону, что и ток i1.

Способы индуцирования э. д. с. в электрических машинах. Явление электромагнитной индукции широко используется в различных электрических машинах и устройствах. На этом принципе основано устройство электрических генераторов, двигателей и трансформаторов. Для индуцирования э. д. с. в них обычно применяются три способа:

  • изменение тока в катушке 1, в магнитном поле которой расположена вторая катушка 2. При этом непрерывно изменяется магнитный поток, охватываемый второй катушкой, и в ней, а также и в первой катушке, будут индуцироваться электродвижущие силы e1 и e2. Этот способ используют в трансформаторах;
  • вращение магнитного поля, созданного постоянными магнитами или электромагнитами 3, относительно неподвижных катушек 4 (рис. 55, б). При этом непрерывно изменяется магнитный поток, пронизывающий каждую катушку, и в них индуцируются э. д. с. е. Такой способ используют в основном в машинах переменного тока;
  • вращение витков 6 или катушек в постоянном магнитном поле, созданном неподвижными постоянными магнитами 5 или электромагнитами.

При этом непрерывно изменяется магнитный поток, охватываемый каждым витком или катушкой, вследствие чего в них индуцируется э. д. с. е. Этот способ используют в основном в электрических машинах постоянного тока. В рассмотренных случаях э. д. с, индуцированные в витках или катушках, будут переменными.

ИНФОФИЗ – мой мир.

Весь мир в твоих руках – все будет так, как ты захочешь

Весь мир в твоих руках – все будет так, как ты захочешь

  • Главная
  • Мир физики
    • Физика в формулах
    • Теоретические сведения
    • Физический юмор
    • Физика вокруг нас
    • Физика студентам
      • Для рефератов
      • Экзамены
      • Лекции по физике
      • Естествознание
  • Мир астрономии
    • Солнечная система
    • Космонавтика
    • Новости астрономии
    • Лекции по астрономии
    • Законы и формулы – кратко
  • Мир психологии
    • Физика и психология
    • Психологическая разгрузка
    • Воспитание и педагогика
    • Новости психологии и педагогики
    • Есть что почитать
  • Мир технологий
    • World Wide Web
    • Информатика для студентов
      • 1 курс
      • 2 курс
    • Программное обеспечение компьютерных сетей
      • Мои лекции
      • Для студентов ДО
      • Методические материалы
  • Физика школьникам
  • Физика студентам
  • Астрономия
  • Информатика
  • Индивидуальный проект
  • Арх ЭВМ и ВС
  • Методические материалы
  • Медиа-файлы
  • Тестирование
  • ПОКС

Как сказал.

Информация в чистом виде ‒ это не знание. Настоящий источник знания ‒ это опыт.

Альберт Эйнштейн

Вопросы к экзамену

Для всех групп технического профиля

Список лекций по физике за 1,2 семестр

Я учу детей тому, как надо учиться

Часто сталкиваюсь с тем, что дети не верят в то, что могут учиться и научиться, считают, что учиться очень трудно.

Урок 36. Лекция 36. Электромагнитная индукция. Правило Ленца.

  • ” onclick=”window.open(this.href,’win2′,’status=no,toolbar=no,scrollbars=yes,titlebar=no,menubar=no,resizable=yes,width=640,height=480,directories=no,location=no’); return false;” rel=”nofollow”> Печать
  • E-mail

Взаимная связь электрических и магнитных полей была установлена выдающимся английским физиком М. Фарадеем в 1831 г. Он открыл явление электромагнитной индукции. Оно заключается в возникновении электрического тока в замкнутом проводящем контуре при изменении во времени магнитного потока, пронизывающего контур.

Явление электромагнитной индукции заключается в возникновении электрического тока в замкнутом контуре при изменении магнитного потока, пронизывающего контур.

Магнитным потоком Φ через площадь S контура называют величину Ф = BScosα

где B – модуль вектора магнитной индукции, α – угол между вектором B и нормалью n к плоскости контура.

Явление электромагнитной индукции Фарадей исследовал с помощью двух изолированных друг от друга проволочных спиралей, намотанных на деревянную катушку. Одна спираль была присоединена к гальванической батарее, а другая — к гальванометру, регистрирующему слабые токи. В моменты замыкания и размыкания цепи первой спира­ли стрелка гальванометра в цепи второй спирали отклонялась.

Опыты Фарадея по исследованию ЭМИ можно разделить на две серии:

Объяснение опыта: При внесении магнита в катушку, соединенную с амперметром в цепи возникает индукционный ток. При удалении так же возникает индукционный ток, но другого направления. Видно, что индукционный ток зависит от направления движения магнита, и каким полюсом он вносится. Сила тока зависит от скорости движения магнита.

Объяснение опыта: электрический ток в катушке 2 возникает в моменты замыкания и размыкания ключа в цепи катушки 1. Видно, что направление тока зависит от того, замыкаюи или размыкают цепь катушки 1, т.е. от того, увеличивается (при замыкании цепи) или уменьшаетя (при размыкании цепи) магнитный поток. пронизывающий 1-ю катушку.

Проводя многочисленные опыты Фарадей установил, что в замкнутых проводящих контурах электрический ток возникает лишь в тех случаях, когда они находятся в переменном магнитном поле, независимо от того, каким способом достигается изменение потока индукции магнитного поля во времени.

Ток, возникающий при явлении электромагнитной индукции, называют индукционным.

Строго говоря, при движении контура в магнитном поле генерируется не определенный ток (который зависит от сопротивления), а определенная э. д. с.

Фарадей экспериментально установил, что при изменении магнитного потока в проводящем контуре возникает ЭДС индукции E инд, равная скорости изменения магнитного потока через поверхность, ограниченную контуром, взятой со знаком минус:

Эта формула выражает закон Фарадея: э. д. с. индукции равна скорости изменения магнитного потока через поверхность, ограни­ченную контуром.

Знак минус в формуле отражает правило Ленца.

В 1833 году Ленц опытным путем доказал утверждение, которое называется правилом Ленца: индукционный ток, возбуждаемый в замкнутом контуре при изменении магнитного потока, всегда направлен так, что создаваемое им магнитное поле препятствует изменению магнитного потока, вызывающего индукционный ток.

При возрастании магнитного потока Ф>0, а ε инд При уменьшении магнитного потока Ф инд > 0, т.е. магнитное поле индукционного тока увеличивает убывающий магнитный поток через контур.

Правило Ленца имеет глубокий физический смысл – оно выражает закон сохранения энергии: если магнитное поле через контур увеличивается, то ток в контуре направлен так, что его магнитное поле направлено против внешнего, а если внешнее магнитное поле через контур уменьшается, то ток направлен так, что его магнитное поле поддерживает это убывающее магнитное поле.

ЭДС индукции зависит от разных причин. Если вдвигать в катушку один раз сильный магнит, а в другой — слабый, то показания прибора в первом случае будут более высокими. Они будут более высокими и в том случае, когда магнит движется быстро. В каждом из проведённых в этой работе опыте направление индукционного тока определяется правилом Ленца. Порядок определения направления индукционного тока показан на рисунке.

На рисунке синим цветом обозначены силовые линии магнитного поля постоянного магнита и линии магнитного поля индукционного тока. Силовые линии магнитного поля всегда направлены от N к S – от северного полюса к южному полюсу магнита.

По правилу Ленца индукционный электрический ток в проводнике, возникающий при изменении магнитного потока, направлен таким образом, что его магнитное поле противодействует изменению магнитного потока. Поэтому в катушке направление силовых линий магнитного поля противоположно силовым линиям постоянного магнита, ведь магнит движется в сторону катушки. Направление тока находим по правилу буравчика: если буравчик (с правой нарезкой) ввинчивать так, чтобы его поступательное движение совпало с направлением линий индукции в катушке, тогда направление вращения рукоятки буравчика совпадает с направлением индукционного тока.

Поэтому ток через миллиамперметр течёт слева направо, как показано на рисунке красной стрелкой. В случае, когда магнит отодвигается от катушки, силовые линии магнитного поля индукционного тока будут совпадать по направлению с силовыми линиями постоянного магнита, и ток будет течь справа налево.

Изменение магнитного потока , пронизывающего замкнутый контур, может происходить по двум причинам.

1. Магнитный поток изменяется вследствие перемещения контура или его частей в постоянном во времени магнитном поле. Это случай, когда проводники, а вместе с ними и свободные носители заряда, движутся в магнитном поле. Возникновение ЭДС индукции объясняется действием силы Лоренца на свободные заряды в движущихся проводниках.. Электродвижущая сила в цепи — это результат действия сторонних сил, т.е. сил неэлектрического происхождения. Сила Лоренца играет в этом случае роль сторонней силы, под действием которой происходит разделение зарядов, в результате чего на концах проводника по­является разность потенциалов.

Рассмотрим в качестве примера возникновение ЭДС индукции в прямоугольном контуре, помещенном в однородное магнитное поле В, перпендикулярное плоскости контура. Пусть одна из сторон контура длиной l скользит со скоростью v по двум другим сторонам.

На свободные заряды на этом участке контура действует сила Лоренца. Составляющая силы Лоренца, действующая на свободный электрон, связанная с переносной скоростью v зарядов, направлена вдоль проводника. Эта составляющая указана на рис. 3. Это она играет роль сторонней силы. Ее модуль равен FЛ = eυB

Э. д. с. индукции в проводнике характеризует работу по перемещению единичного положительного заряда вдоль проводника.

Работа силы FЛ на пути l равна A = FЛ · l = eυBl

По определению ЭДС

В других неподвижных частях контура сторонняя сила равна нулю. Соотношению для инд можно придать привычный вид. За времы Δt площадь контура изменяется на ΔS = lυΔt. Изменение магнитного потока за это время равно ΔΦ = BlυΔt. Следовательно,

Если сопротивление всей цепи равно R, то по ней будет протекать индукционный ток, равный

Iинд = инд/R.

За время Δt на сопротивлении R выделится джоулево тепло

Возникает вопрос: откуда берется эта энергия, ведь сила Лоренца работы не совершает! Этот парадокс возник потому, что мы учли работу только одной составляющей силы Лоренца. При протекании индукционного тока по проводнику, находящемуся в магнитном поле, на свободные заряды действует еще одна составляющая силы Лоренца, связанная с относительной скоростью движения зарядов вдоль проводника. Эта составляющая ответственна за появление силы Ампера FA . Для случая, изображенного на рис. 3, модуль силы Ампера равен FA = IBl. Сила Ампера направлена навстречу движения проводника; поэтому она совершает отрицательную механическую работу. За время Δt эта работа Aмех равна

Движущийся в магнитном поле проводник, по которому протекает индукционный ток, испытывает магнитное торможение. Полная работа силы Лоренца равна нулю.

Джоулево тепло в контуре выделяется либо за счет работы внешней силы, которая поддерживает скорость проводника неизменной, либо за счет уменьшения кинетической энергии проводника.

При движении провод­ника вправо свободные электроны, содержащиеся в нем, будут двигаться также вправо, т. е. возникает конвекционный ток. Направление этого тока обратно направлению движения электронов.

На каждый движущийся электрон со стороны магнитного поля действует сила Лоренца Fл. Заряд электрона — отрицательный. Поэтому сила Лоренца направлена вниз.

Под действием этой силы электроны будут двигаться вниз, поэтому в нижней части проводника l накапли­ваются отрицательные заряды, а в верхней — положительные. Образуется разность потенциалов φ1 – φ2, в проводнике возникает электрическое поле напряженностью Е, которое препятствует дальнейшему перемещению электро­нов.

В момент, когда сила Fэл = еЕ, действующая на заряды со стороны этого электрического поля, станет равной по модулю силе Fл = evBsinα, действую­щей на заряды со стороны магнитного поля, т.е. при еЕ = evBsinα или Е = vBsinα , заряды перестанут перемещаться.

Напряженность электрического поля Е в движущемся проводнике длиной l и разность потенциалов φ1 – φ2 связаны между собой соотношением

Если такой проводник замкнуть, то по цепи пойдет ток. Таким образом, на концах проводника индуцируется э.д. с.

2. Вторая причина изменения магнитного потока, пронизывающего контур, – изменение во времени магнитного поля при неподвижном контуре . В этом случае возникновение ЭДС индукции уже нельзя объяснить действием силы Лоренца. Электроны в неподвижном проводнике могут приводиться в движение только электрическим полем. Это электрическое поле порождается изменяющимся во времени магнитным полем. Работа этого поля при перемещении единичного положительного заряда по замкнутому контуру равна ЭДС индукции в неподвижном проводнике. Следовательно, электрическое поле, порожденное изменяющимся магнитным полем, не является потенциальным. Его называют вихревым электрическим полем . Представление о вихревом электрическом поле было введено в физику великим английским физиком Дж. Максвеллом (1861 г.).

Явление электромагнитной индукции в неподвижных проводниках, возникающее при изменении окружающего магнитного поля, также описывается формулой Фарадея.

Таким образом, явления индукции в движущихся и неподвижных проводниках протекают одинаково, но физическая причина возникновения индукционного тока оказывается в этих двух случаях различной: в случае движущихся проводников ЭДС индукции обусловлена силой Лоренца; в случае неподвижных проводников ЭДС индукции является следствием действия на свободные заряды вихревого электрического поля, возникающего при изменении магнитного поля.

Явление электромагнитной индукции лежит в основе действия электриче­ских генераторов. Если равномерно вращать проволочную рамку в однородном магнитном поле, то возникает индуцированный ток, периодически изменяющий свое направление. Даже одиночная рамка, вращающаяся в однородном маг­нитном поле, представляет собой генератор переменного тока. Более сложные генераторы обычно являются улучшенными вариантами такого устройства.

Читайте также:
Твердотопливный котел Buderus: видео-инструкция по монтажу своими руками, особенности изделий на твердом топливе, Logano S111 2, цена, фото
Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: