Электричество из водорода своими руками

Как сделать водородный генератор своими руками?

Водород практически идеальный вид топлива, но проблема заключается в том, что он на нашей планете встречается только в виде соединений с другими химическими элементами. Доля «чистого» вещества в атмосфере составляет не более 0,00005%. Учитывая такие реалии, становится актуальным вопрос о водородном генераторе. Рассмотрим принцип работы такого устройства, его конструктивные особенности, сферу применения и возможность самостоятельного изготовления.

Описание и принцип работы водородного генератора

Есть несколько методик выделения водорода и из других веществ, перечислим наиболее распространенные:

  1. Электролиз, данная методика наиболее простая и может быть реализована в домашних условиях. Через водный раствор, содержащий соль, пропускается постоянный электрический ток, под его воздействием происходит реакция, которую можно описать следующим уравнением: 2NaCl + 2H2O→2NaOH + Cl2 + H2↑. В данном случае пример приведен для раствора обычной кухонной соли, что не лучший вариант, поскольку выделяющийся хлор является ядовитым веществом. Заметим, что полученный данным способом водород наиболее чистый (порядка 99,9%).
  2. Путем пропускания водяного пара над каменноугольным коксом, нагретым до температуры 1000°С, при таких условиях протекает следующая реакция: Н2О + С ⇔ СО↑ + H2↑.
  3. Добыча из метана путем конверсии с водяным паром (необходимое условие для реакции – температура 1000°С): СН4 + Н2О ⇔ СО + 3Н2. Второй вариант – окисление метана: 2СН4 + О2 ⇔ 2СО + 4Н2.
  4. В процессе крекинга (переработки нефти) водород выделяется в качестве побочного продукта. Заметим, что в нашей стране все еще практикуется сжигание этого вещества на некоторых нефтеперерабатывающих заводах ввиду отсутствия необходимого оборудования или достаточного спроса.

Из перечисленных вариантов последний наименее затратный, а первый наиболее доступный, именно он положен в основу большинства генераторов водорода, в том числе и бытовых. Их принцип действия заключается в том, что в процессе пропускания тока через раствор, положительный электрод притягивает отрицательные ионы, а электрод с противоположным зарядом – положительные, в результате происходит расщепление вещества.

Пример электролиза на растворе хлорида натрия

Конструктивные особенности и устройство генератора водорода

Если с получением водорода проблем сейчас практически нет, то его транспортировка и хранение до сих пор остается актуальной задачей. Молекулы этого вещества настолько малы, что могут проникать даже сквозь металл, что несет определенную угрозу безопасности. Хранение в абсорбированном виде пока не отличается высокой рентабельностью. Поэтому наиболее оптимальный вариант – генерация водорода непосредственно перед его использованием в производственном цикле.

Для этой цели изготавливаются промышленные установки для генерации водорода. Как правило, это электролизеры мембранного типа. Упрощенная конструкция такого устройства и принцип работы приведен ниже.

Упрощенная схема водородного генератора мембранного типа

Обозначения:

  • А – трубка для отвода хлора (Cl2).
  • B – отвод водорода (Н2).
  • С – анод, на котором происходит следующая реакция: 2CL — →CL2 + 2е — .
  • D – катод, реакцию на нем можно описать следующим уравнением: 2Н2О + 2е — →Н2 + ОН — .
  • Е – раствор воды и хлористого натрия (Н2О & NaCl).
  • F – мембрана;
  • G – насыщенный раствор хлористого натрия и образование каустической соды (NaОН).
  • H – отвод рассола и разбавленной каустической соды.
  • I – ввод насыщенного рассола.
  • J – крышка.

Конструкция бытовых генераторов значительно проще, поскольку в большинстве своем они не вырабатывают чистый водород, а производят газ Брауна. Так принято называть смесь кислорода и водорода. Этот вариант наиболее практичен, не требуется разделять водород и кислород, то можно значительно упростить конструкцию, а значит и сделать ее дешевле. Помимо этого полученный газ сжигается по мере его выработки. Хранить и накапливать его в домашних условиях не только проблематично, но и небезопасно.

Обозначения:

  • а – трубка для отвода газа Брауна;
  • b – впускной коллектор подачи воды;
  • с – герметичный корпус;
  • d – блок пластин электродов (анодов и катодов), с установленными между ними изоляторами;
  • e – вода;
  • f – датчик уровня воды (подключается к блоку управления);
  • g – фильтр водоотделения;
  • h – подвод питания, подаваемого на электроды;
  • i – датчик давления (подает сигнал блоку управления при достижении порогового уровня);
  • j – предохранительный клапан;
  • k – отвод газа с предохранительного клапана.

Характерная особенность таких устройств – использование блоков электродов, поскольку не требуется сепарирование водорода и кислорода. Это позволяет сделать генераторы довольно компактными.

Блоки электродов для установки, которая производит газ Брауна

Сферы применения водородного генератора

Ввиду проблем, связанных с транспортировкой и хранением водорода, такие устройства востребованы в производствах, где наличие этого газа требует технологический цикл. Перечислим основные направления:

  1. Производства, связанные с синтезом хлороводорода.
  2. Изготовление топлива для ракетных двигателей.
  3. Создание удобрений.
  4. Производство нитрида водорода (аммиака).
  5. Синтез азотной кислоты.
  6. В пищевой промышленности (для получения твердых жиров из растительных масел).
  7. Обработка металла (сварка и резка).
  8. Восстановление металлов.
  9. Синтез метилового спирта
  10. Изготовление соляной кислоты.

Основные сферы применения генераторов водорода в промышленности

Несмотря на то, что производство водорода в процессе переработки нефти дешевле, чем его получение путем электролиза, как уже указывалось выше, возникают сложности с транспортировкой газа. Строить опасные химические производства, непосредственно, рядом с перерабатывающими нефть заводами не всегда позволяет экологическая обстановка. Помимо этого водород, полученный путем электролиза, значительно чище, чем при крекинге нефти. В связи с этим на промышленные водородные генераторы всегда высокий спрос.

Бытовое применение

В быту также есть применение водороду. В первую очередь это автономные отопительные системы. Но здесь некоторые особенности. Установки по производству чистого водорода стоят значительно дороже, чем генераторы газа Брауна, последние даже можно собрать самостоятельно. Но при организации отопления дома необходимо учитывать, что температура горения газа Брауна значительно выше, чем у метана, поэтому потребуется специальный котел, который несколько дороже обычного.

Читайте также:
Утепление балкона газобетонными блоками

Топливный котел должен иметь соответствующую метку

В интернете можно встретить немало статей, в которых написано, что для гремучего газа можно использовать обычные котлы, это делать категорически нельзя. В лучшем случае они быстро выйдут из строя, а в худшем могут стать причиной печальных или даже трагических последствий. Для смеси Брауна предусмотрены специальные конструкции с более термостойким соплом.

Необходимо заметить, что рентабельность отопительных систем на основе водородных генераторов вызывает большое сомнение ввиду низкого КПД. В таких системах имеются двойные потери, во-первых, в процессе генерации газа, во-вторых, при нагреве воды в котле. Дешевле для отопления сразу нагревать воду в электрическом бойлере.

Не менее спорная реализация для бытового использования, при которой газом Брауна обогащают бензин в топливной системе двигателя автомобиля с целью экономии.

Применение генератора ННО в авто

Обозначения:

  • а – генератор ННО (принятое обозначение для газа Брауна);
  • b – отвод газа в камеру сушки;
  • с – отсек для удаления водяных паров;
  • d – возвращение конденсата в генератор;
  • е – подача осушенного газа в воздушный фильтр топливной системы;
  • f – автомобильный двигатель;
  • g – подключение к аккумулятору и электрогенератору.

Нужно заметить, что в некоторых случаях такая система даже работает (если ее собрать правильно). Но точные параметры, коэффициент прироста мощности, процент экономии вы не найдете. Эти данные сильно размыты, и достоверность их вызывает сомнения. Опять же не ясен вопрос, насколько уменьшится ресурс двигателя.

Но спрос порождает предложения, в интернетах можно найти подробные чертежи таких приспособлений и инструкцию по их подключению. Есть и готовые модели, сделанные в стране Восходящего Солнца.

Делаем простейший генератор водорода своими руками пошагово

Расскажем, как можно сделать самодельный генератор для получения смеси водорода и кислорода (ННО). Его мощности на отопления дома не хватит, но для газовой горелки для резки металла количество полученного газа будет достаточным.

Рис. 8. Схема газовой горелки

Обозначения:

  • а – сопло горелки;
  • b – трубки;
  • c – водные затворы;
  • d – вода;
  • е – электроды;
  • f – герметичный корпус.

В первую очередь делаем электролизер, для этого нам понадобится герметичная емкость и электроды. В качестве последних используем стальные пластины (их размер выбираем произвольно, в зависимости от желаемой производительности), прикрепленные к диэлектрическому основанию. Соединяем между собой все пластины каждого из электродов.

Когда электроды готовы их надо укрепить в емкости таким образом, чтобы места подключения проводов питания были выше предполагаемого уровня воды. Провода от электродов идут к блоку питания на 12 вольт или автомобильному аккумулятору.

В крышке емкости делаем отверстие под трубку для выхода газа. В качестве водных затворов можно использовать обычные стеклянные банки емкостью 1 литр. Заполняем их на 2/3 водой и подключаем к электролизеру и горелке, как показано на рисунке 8.

Горелку лучше взять готовую, поскольку не каждый материал может выдержать температуру горения газа Брауна. Подключаем ее к выходу последнего водного затвора.

Наполняем электролизер водой, в которую добавлена обычная кухонная соль.

Подаем напряжение на электроды и проверяем работу устройства.

Водородная энергетика. Да здравствует газ

На днях на одном канале Дзена, посвященному развитию альтернативной энергетике и электромобилям, прочитал статью, которую я отношу к категории «зеленых мрiй». Как часто и бывает в таких статьях, очень пафосно описано светлое декарбонизированное будущее: на полях, горах и бескрайних степях крутятся тысячи ветряков, стоят десятки тысяч гектар солнечных панелей, которые вырабатывают тераватты электроэнергии. Избытки пускаются на электролиз воды, в безветренную погоду и темное время суток горят миллиарды кубометров полученного водорода, энергии валом, нет вонючих выбросов, климат в норме, все счастливы и танцуют индийские танцы. Болливуд одним словом. Плюс стандартный набор «символа веры» зеленого сектанта – кoнец нефти, конец газа и, ну куда без этого – конец Газпрома. На этот раз бесповоротный и окончательный

Только вот реальная энергетика и промышленность так не работает. Не секрет, что не смотря на громадные вливания в альтернативную энергетику, ее доля в мировой невелика. Как и общего производства энергии, так и электроэнергии

Достаточно пристально посмотреть на картинки, то окажется что 3/4 энергетики – это нефть, уголь и газ. Хотя мне кажется, что большинство адептов зеленой энергетики либо сектанты, либо жесткие прагматики, которые делают на этом деньги. С первыми все понятно, это вопрос веры, вера же вещь иррациональная, никакие разговоры про EROEI, КИУМ, экономические расчёты не способны повлиять на догматику веры. А вторые делают на этом деньги, они и запускают такие рекламные проспекты, которые хавают зеленые сектанты.

Но я отвлекся, разговор все же про водородную энергетику. В отличии от многих других альтернатив, не смотря на минусы, я считаю ее вполне рациональной вещью. Действительно, водород очень калориен, при сгорании килограмма водорода выделяется почти в три раза энергии, чем при сгорании метана. Но в то же время килограмм водорода занимает 11 кубометров, а метана – всего полтора. А пропан-бутановой смеси – всего 0,55 м3. То есть для запасания одной и той же массы топлива потребуется больше и затрат. Так что не все так однозначно.

Читайте также:
Строительная сталь и чугун

Но и это не самое главное, только совсем упоротые «зеленые» фантазеры верят в то, что водород это альтернативное топливо. Но они очень жестоко ошибаются, оно является тем же углем и газом, только в новой упаковке. 76 процентов водорода получают из газа, 23 – из угля и только один процент – путем электролиза воды. Причина банальнейшая – деньги. Не смотря на красивые слова про декарбонизацию, борьбу с изменениями климата и прочими светлыми целями, прагматики от альтернативной энергетики умеют считать деньги. И в данном случае даже светлые цели не оправдают затрат.

Технологии получения водорода из угля (газификация угля), получения водород из газа – парового риформинга метана (MRS) и/или автотермический реформинг (с использованием технологии улавливания и захоронения диоксида углерода CCS), да и самый «зеленый способ – пиролиз метана, гораздо выгоднее электролиза, в 2,5-10 раз. Это и есть «голубой» водород по терминологии ЕС. То есть верить в электролизный водород могут совсем отшибленные на голову недоучки-«зеленые» (ставлю в кавычки, потому что есть и реально грамотные специалисты по экологии и защите окружающей среды, но они умеют мыслить рационально и не поддаются зеленым мриям), которые свято верят в электричество из розетки. А на деле рост потребления водорода обозначает рост добычи угля и газа. Что как бы не похоронит Газпром и прочих добытчиков газа, а скорее воскресит, аки Христос воскресил Лазаря.

В принципе Россия сейчас является одним из лидеров производства водорода. Так мы уже производим свыше 5 миллионов тонн водорода в год, порядка 5% мирового производства, и без особых усилий можем увеличить эту цифру в разы. Только вот большая часть водорода ввиду его особенностей – огромной летучести и наводораживания металла, который приводит к его разрушению, используется на месте его производства. Поэтому и пять миллионов тонн, больше и не нужно. Пока.

Но если появится крупный покупатель водорода, например Германия, то его производство будет наращиваться. А транспортировать его проще простого – через трубу. Да-да, через те самые газопроводы, которые, как говорят гробовщики Газпрома, не нужны, мол газа надо все меньше и меньше, достаточно газовозов. Это тоже сектанты, только из другой оперы – гибели России.
В чистом виде его транспортировать себе дороже, но если его подмешивать в метан до 10-20 процентов, то на состоянии современной инфраструктуры это никак не скажется. А уж на том конце труды его можно выделить с помощью технологии с совсем зубодробительным названием – короткоцикловая безнагревная адсорбция.

Если же учесть, что в 2050 году мировое потребление планируется в количестве аж 470 миллионов тонн (если честно, есть у меня сомнение в этой цифре, зачем столько его нужно), то это только подстегнет добычу угля и, особенно, природного газа. А если учесть, что на настоящий момент современная ГТС (украинская дляэтого не подходит), позволяющая транспортировать водород есть только у нас, то, хе-хе, условный Китай и ЕС никуда не денутся от нашего водорода. Впрочем, могут брать и метан с углем и делать у себя – без разницы. Главное, что «век угля, нефти и газа» продлевается еще на длительное время, и мы еще простудимся на похоронах тех, кто его хоронит

Собираем электролизер и делаем водородную горелку

Материалы и инструменты, которые использовал автор:

Список материалов:
– листовая сталь (а лучше нержавейка);
– едкий натр и вода (для электролита);
– силиконовый герметик;
– крестики для кладки плитки;
– оргстекло;
– штуцера;
– кусок трубы и медная проволока (для пламегасителя);
– надежные провода, шланг и пр.

Процесс изготовления самоделки:

Шаг первый. Вырезаем электроды
Первым делом вырезаем электроды, для этого лучше использовать нержавеющую сталь, поскольку любой другой быстро выгорит и весь узел придет в негодность.

Чем больше будет электродов, тем больше газа сможет выделить генератор. В итоге у автора получилась довольно массивная пачка электродов, листовой металл удобнее всего резать на станке.








Шаг второй. Сборка генератора
Далее нужно собрать генератора как на схеме. Между электродами должно быть некоторое расстояние, чем меньше оно будет, тем меньшее понадобится напряжение для электролиза. Электроды по схеме подключаются последовательно, что нужно также для снижения питающего напряжения.

Весь блок собирается на силиконовом герметике, в итоге получается своего рода труба из электродов, которая будет заполняться электролитом. Ну а газ будет выходить через просверленные отверстия.







Для получения необходимых зазоров ставим крестики, которые используются при кладке плитки. Ну а далее наносим герметик по кругу и склеиваем блок. Процедура требует немало времени и внимания, так как пластин довольно много.

Шаг третий. Гидрозатвор
Для недопущения взрыва генератора, в нем обязательно должен быть гидрозатвор. Автор реализовал его из листов оргстекла. Также кусок оргстекла используется для задней стенки генератора. Также используем силиконовый герметик, а в завершении все стягиваем болтами с гайками.



















Шаг пятый. Горелка и пламегаситель
Так как выделяем газ является уже готовой горючей смесью, нужно обязательно предусмотреть пламегаситель, чтобы огонь не добрался до генератора.

Сделать пламегаситель можно из куска трубы, просто набиваем в трубу медную проволоку. Когда огонь будет проходить через холодную проволоку, он будет терять энергию и, теоретически, будет тухнуть. У автора несколько раз он не срабатывал, но тем не менее его наличии в конструкции важно.

Читайте также:
Универсальная пила – ножовки на все случаи жизни (+ 5 видео)

Ну а в качестве сопла была использована игла от шприца.














Самоделка готова, газ выделяется отлично, получилась мини-горелка с очень высокой температурой факела. Такая горелка легко режет алюминиевую банку и даже плавит стекло.

В качестве сравнения автор продемонстрировал и мощный заводской вариант. Конечно, пламя у заводской версии куда мощнее, но и самодельный вариант также имеет право на жизнь. Конечно, в случае надобности можно собрать генератор и с более высокой производительностью.

На этом проект завершен, надеюсь, вам самоделка понравилась, и вы нашли для себя полезные мысли. Удачи и творческих вдохновений, если решите повторить подобное. Не забывайте делиться с нами своими идеями и самоделками!

Как сделать водородный генератор своими руками

Здесь вы узнаете:

  • Описание и принцип работы водородного генератора
  • Основные достоинства отопления на водороде
  • Область применения
  • Конструкция водородного генератора
  • Как изготовить генератор
  • Делаем простейший генератор водорода своими руками пошагово
  • Отопление дома газом Брауна
  • Безопасность установки
  • Генератор промышленного изготовления
  • Экономическая целесообразность

Перед тем, как сделать водородный генератор, необходимо изучить все тонкости – экономическую целесообразность, безопасность. Предлагаем несколько простых схем и конструкций водородного генератора.

Описание и принцип работы водородного генератора

Есть несколько методик выделения водорода и из других веществ, перечислим наиболее распространенные:

  1. Электролиз, данная методика наиболее простая и может быть реализована в домашних условиях. Через водный раствор, содержащий соль, пропускается постоянный электрический ток, под его воздействием происходит реакция, которую можно описать следующим уравнением: 2NaCl + 2H2O→2NaOH + Cl2 + H2↑. В данном случае пример приведен для раствора обычной кухонной соли, что не лучший вариант, поскольку выделяющийся хлор является ядовитым веществом. Заметим, что полученный данным способом водород наиболее чистый (порядка 99,9%).
  2. Путем пропускания водяного пара над каменноугольным коксом, нагретым до температуры 1000°С, при таких условиях протекает следующая реакция: Н2О + С ⇔ СО↑ + H2↑.
  3. Добыча из метана путем конверсии с водяным паром (необходимое условие для реакции – температура 1000°С): СН4 + Н2О ⇔ СО + 3Н2. Второй вариант – окисление метана: 2СН4 + О2 ⇔ 2СО + 4Н2.
  4. В процессе крекинга (переработки нефти) водород выделяется в качестве побочного продукта. Заметим, что в нашей стране все еще практикуется сжигание этого вещества на некоторых нефтеперерабатывающих заводах ввиду отсутствия необходимого оборудования или достаточного спроса.

Из перечисленных вариантов последний наименее затратный, а первый наиболее доступный, именно он положен в основу большинства генераторов водорода, в том числе и бытовых. Их принцип действия заключается в том, что в процессе пропускания тока через раствор, положительный электрод притягивает отрицательные ионы, а электрод с противоположным зарядом – положительные, в результате происходит расщепление вещества.


Пример электролиза на растворе хлорида натрия

Основные достоинства отопления на водороде

Данный способ обогрева дома имеет несколько существенных преимуществ, которыми обусловлена возрастающая популярность системы.

  1. Впечатляющий КПД, который нередко достигает 96%.
  2. Экологичность. Единственный побочный продукт, выделяющийся в атмосферу – это водяной пар, который не способен навредить окружающей среде в принципе.
  3. Водородное отопление постепенно заменяет традиционные системы, освобождая людей от необходимости в добыче природных ресурсов – нефти, газа, угля.
  4. Водород действует без огня, тепловая энергия образуется путем каталитической реакции.

Область применения

Сегодня электролизёр — такое же привычное устройство, как и генератор ацетилена или плазменный резак. Изначально водородные генераторы использовались сварщиками, поскольку носить за собой установку весом всего несколько килограмм было намного проще, чем перемещать огромные кислородные и ацетиленовые баллоны. При этом высокая энергоёмкость агрегатов решающего значения не имела — всё определяло удобство и практичность. В последние годы применение газа Брауна вышло за рамки привычных понятий о водороде, как топливе для газосварочных аппаратов. В перспективе возможности технологии очень широки, поскольку использование HHO имеет массу достоинств.

  • Сокращение расхода горючего на автотранспорте. Существующие автомобильные генераторы водорода позволяют использовать HHO как добавку к традиционному бензину, дизелю или газу. За счёт более полного сгорания топливной смеси можно добиться 20 – 25 % снижения потребления углеводородов.
  • Экономия топлива на тепловых электростанциях, использующих газ, уголь или мазут.
  • Снижение токсичности и повышение эффективности старых котельных.
  • Многократное снижение стоимости отопления жилых домов за счёт полной или частичной замены традиционных видов топлива газом Брауна.
  • Использование портативных установок получения HHO для бытовых нужд — приготовления пищи, получения тёплой воды и т. д.
  • Разработка принципиально новых, мощных и экологичных силовых установок.

Генератор водорода, построенный с использованием «Технологии водяных топливных ячеек» С. Мейера (а именно так назывался его трактат) можно купить — их изготовлением занимается множество компаний в США, Китае, Болгарии и других странах. Мы же предлагаем изготовить водородный генератор самостоятельно.

Конструкция водородного генератора

Для постройки генераторов водорода своими руками обычно берут в качестве основы классическую схему установки Брауна. Такой электролизёр средней мощности состоит из группы ячеек, каждая из которых содержит группу пластинчатых электродов. Мощность установки определяется общей площадью поверхности пластинчатых электродов.

Ячейки помещаются внутрь ёмкости, хорошо изолированной от внешней среды. На корпус резервуара выводятся патрубки для подключения водяной магистрали, вывода водорода, а также контактная панель подключения электричества.


Аппарат генерации водорода, спроектированный по схеме Брауна. По всем расчётам эта установка вполне должна обеспечить домашнее хозяйство теплом и светом. Другой вопрос – какие габариты и мощности позволят это сделать (+)

Схема генератора Брауна, кроме всего прочего, предусматривает наличие водяного затвора и обратного клапана. За счёт этих элементов организуется защита установки от обратного хода водорода. По такой схеме теоретически не исключается сборка водородной установки, к примеру, для организации отопления загородного дома.

Как изготовить генератор

Масса интернет-ресурсов публикуют самые разные схемы и чертежи генератора для получения водорода, но все они действуют по одному принципу. Мы предложим вашему вниманию чертеж простого устройства, взятый из научно-популярной литературы:

Читайте также:
Телескопические направляющие для духового шкафа: что это такое? Как установить его в встраиваемую электрическую духовку?

Здесь электролизер представляет собой группу металлических пластин, стянутых между собой болтами. Между ними установлены изоляционные прокладки, крайние толстые обкладки тоже изготовлены из диэлектрика. От штуцера, вмонтированного в одну из обкладок, идет трубка для подачи газа в сосуд с водой, а из него – во второй. Задача емкостей – отделять паровую составляющую и накапливать смесь водорода с кислородом, чтобы подавать его под давлением.

Совет. Электролитические пластины для генератора надо делать из нержавеющей стали, легированной титаном. Он послужит дополнительным катализатором реакции расщепления.

Пластины, что служат электродами, могут быть произвольного размера. Но надо понимать, что производительность аппарата зависит от их площади поверхности. Чем большее число электродов удастся задействовать в процессе, тем лучше. Но при этом и потребляемый ток будет выше, это следует учитывать. К концам пластин припаиваются провода, ведущие к источнику электричества. Здесь тоже есть поле для экспериментов: можно подавать на электролизер разное напряжение с помощью регулируемого блока питания.

В качестве электролизера можно применить пластиковый контейнер от водяного фильтра, поместив в него электроды из нержавеющих трубок. Изделие удобно тем, что его легко герметизировать от окружающей среды, выводя трубку и провода через отверстия в крышке. Другое дело, что этот самодельный водородный генератор обладает невысокой производительностью из-за малой площади электродов.

Делаем простейший генератор водорода своими руками пошагово

Расскажем, как можно сделать самодельный генератор для получения смеси водорода и кислорода (ННО). Его мощности на отопления дома не хватит, но для газовой горелки для резки металла количество полученного газа будет достаточным.


Рис. 8. Схема газовой горелки

Обозначения:

  • а – сопло горелки;
  • b – трубки;
  • c – водные затворы;
  • d – вода;
  • е – электроды;
  • f – герметичный корпус.

В первую очередь делаем электролизер, для этого нам понадобится герметичная емкость и электроды. В качестве последних используем стальные пластины (их размер выбираем произвольно, в зависимости от желаемой производительности), прикрепленные к диэлектрическому основанию. Соединяем между собой все пластины каждого из электродов.

Когда электроды готовы их надо укрепить в емкости таким образом, чтобы места подключения проводов питания были выше предполагаемого уровня воды. Провода от электродов идут к блоку питания на 12 вольт или автомобильному аккумулятору.

В крышке емкости делаем отверстие под трубку для выхода газа. В качестве водных затворов можно использовать обычные стеклянные банки емкостью 1 литр. Заполняем их на 2/3 водой и подключаем к электролизеру и горелке, как показано на рисунке 8.

Горелку лучше взять готовую, поскольку не каждый материал может выдержать температуру горения газа Брауна. Подключаем ее к выходу последнего водного затвора.

Наполняем электролизер водой, в которую добавлена обычная кухонная соль.

Подаем напряжение на электроды и проверяем работу устройства.

Отопление дома газом Брауна


Схема работы водородного генератора.

Водород является самым распространенным химическим элементом, поэтому экономически выгодно его использовать.

Для многих владельцев домов и дач часто встает вопрос, как получить «чистую» и дешевую энергию для нужд в быту. Ответ можно найти в таких инновациях, как водогенератор для отопления жилища.

Ученые, благодаря своим разработкам, позволили многим использовать такое устройство для получения газа. Установка способна генерировать водород (газ Брауна) и этот газ будет использован для получения энергии.

Можно это соединение представить химической формулой, как hho. Данный газ можно получить из воды с помощью метода электролиза. Есть много примеров в жизни, когда люди хотят свой дом отапливать оксиводородом. Но чтобы этот вид топлива получил популярность, надо сначала научиться получать его (газ Брауна) в бытовых условиях.

Пока еще нет технологии водородного отопления частного дома, которая была бы достаточно надежной.

Смотрите видео, в котором опытный пользователь разъясняет, как сделать водородный генератор своими руками:

Безопасность установки

Многие умельцы размещают пластины в пластиковых ёмкостях. Не стоит экономить на этом. Нужен бак из нержавеющего металла. Если его нет, можно использовать конструкцию с пластинами открытого типа. В последнем случае необходимо применять качественный изолятор тока и воды для надёжной работы реактора.

Известно, что температура горения водорода составляет 2800. Это самый взрывоопасный газ в природе. Газ Брауна – не что иное, как «гремучая» смесь водорода. Поэтому водородные генераторы на автомобильном транспорте требуют качественной сборки всех узлов системы и наличия датчиков для слежения за течением процесса.

Датчик температуры рабочей жидкости, давления и амперметр не будут лишними в конструкции установки. Особое внимание стоит уделить гидрозатвору на выходе из реактора. Он жизненно необходим. Если произойдёт воспламенение смеси, такой клапан предотвратит распространение пламени в реактор.

Водородный генератор для отопления жилых и производственных помещений, работающий на тех же принципах, отличается в несколько раз большей производительностью реактора. В таких установках отсутствие гидрозатвора представляет смертельную опасность. Водородные генераторы на автомобилях в целях обеспечения безопасной и надёжной работы системы также рекомендуется оборудовать таким обратным клапаном.

Читайте также:
Строительные леса – как сэкономить?

Генератор промышленного изготовления

На уровне промышленного производства технологии изготовления водородных генераторов бытового назначения постепенно осваиваются и развиваются. Как правило, выпускаются энергетические станции домашнего применения, мощность которых не превышает 1 кВт.

Такой аппарат рассчитан на выработку водородного топлива в режиме постоянного функционирования не более чем в течение 8 часов. Главное их предназначение – энергоснабжение отопительных систем.

Также разрабатываются и производятся установки под эксплуатацию в составе кондоминиумов. Это уже более мощные конструкции (5-7 кВт), назначение которых не только энергетика отопительных систем, но также выработка электричества. Такой комбинированный вариант быстро набирает популярность в западных странах и в Японии.

Комбинированные водородные генераторы характеризуются как системы с высоким КПД и небольшим выбросом углекислого газа.


Пример реально действующей промышленно изготовленной станции мощностью до 5 кВт. Подобные установки в перспективе планируется делать под оснащение коттеджей и кондоминиумов

Российская промышленность тоже начала заниматься этим перспективным видом добычи топлива. В частности, «Норильский никель» осваивает технологии производства водородных установок, в том числе бытовых.

Планируется использовать самые разные типы топливных элементов в процессе разработки и производства:

  • протонно-обменные мембранные;
  • ортофосфорно-кислотные;
  • протонно-обменные метанольные;
  • щелочные;
  • твердотельные оксидные.

Между тем процесс электролиза является обратимым. Этот факт говорит о том, что есть возможность получать уже нагретую воду без сжигания водорода.

Кажется, это очередная идея, ухватившись за которую можно запускать новый виток страстей, связанных с бесплатной добычей топлива для домашнего котла.

Экономическая целесообразность

В домашних условиях изготовить качественную водородную установку очень сложно. Мастеру придется учитывать массу параметров. Например, нужно точно подобрать металл для электродов. Он должен обладать определенными свойствами.


Всеми любимая нержавейка — доступное, но недолговечное решение. Топливные ячейки на них довольно быстро выйдут из строя.

Также при сборке гидролизатора нужно соблюдать монтажные размеры. Чтобы их получить, нужно произвести сложные расчеты с учетом качества воды, необходимой мощности на выходе и т. д.

При изготовлении устройства значение имеет даже сечение проводов, по которым на электроды подается ток. Речь идет не о производительности генератора, а о безопасности его эксплуатации, но и этот важный нюанс нужно учитывать.

Главная проблема таких приборов — большие затраты электричества для получения оксиводорода. Они превышают энергию, которую можно получить от сжигания такого топлива.

Из-за низкого КПД цена водородной установки для дома делает производство этого газа и его последующее использование для отопления невыгодным. Чем впустую расходовать электричество, проще установить любой электрокотел. Он будет эффективнее.

Что касается автомобильного транспорта, то здесь картина не сильно отличается. Да, можно сделать гидролизер для экономии топлива, но при этом снижается безопасность и надежность.

Единственное, где водород можно эффективно применять как топливо, — газосварка. Аппараты на hydrogen весят меньше, они компактнее, чем кислородные баллоны, но намного эффективнее. К тому же стоимость получения смеси здесь не играет никакой роли.

Перспективы и недостатки водородной энергетики

Для хранения и выработки энергии от водорода используются топливные элементы. Первый водородный топливный элемент был сконструирован английским ученым Уильямом Гроувом в 30-х годах 19 века. Гроув и работавший параллельно с ним Кристиан Шенбейн продемонстрировали возможность производства энергии в водородно-кислородном топливном элементе с использованием кислотного электролита.

В 1959 году Фрэнсис Т. Бэкон из Кембриджа добавил в водородный топливный элемент ионообменную мембрану для облегчения транспорта гидроксид-ионов. Изобретением Бэкона сразу заинтересовались правительство США и NASA, обновленный топливный элемент стал использоваться на космических аппаратах «Аполлон» в качестве главного источника энергии во время их полетов.

В отличие от кислорода водород практически не встречается на земле в чистом виде и поэтому извлекается из других соединений с помощью различных химических методов.

По этим способам его разделяют на цветовые градации.

Зеленый — производится из возобновляемых источников энергии методом электролиза воды. Все, что необходимо для этого: вода, электролизер и большое снабжение электроэнергией.

Голубой — производится из природного газа, а вредные отходы улавливаются для вторичного использования. Тем не менее идеально чистым этот метод не назовешь.

Розовый или красный — произведенный при помощи атомной энергии.

Серый — водород получают путем конверсии метана. При его производстве вредные отходы выбрасываются в атмосферу.

Коричневый — водород получают в результате газификации угля. Этот метод также после себя оставляет парниковые газы.

Еще существуют технологии получения биоводорода из мусора и этанола, но их доля чрезвычайно мала.

Себестоимость производства по видам водорода, доллар за килограмм

Зеленый 10
Голубой 2 $
Красный 2 $
Серый 2—2,5 $
Коричневый 2—2,5 $

Водородная энергетика

На переработку угля приходится 18% производства водорода, 4% обеспечивается за счет зеленого водорода и 78% — переработкой природного газа и нефти. Методы производства, основанные на ископаемом топливе, приводят к образованию 830 млн тонн выбросов CO2 каждый год, что равно выбросам Великобритании и Индонезии, вместе взятым. И тем не менее водород — это более чистая альтернатива традиционному топливу.

В мире три основных источника выбросов, способствующих потеплению климата: транспорт, производство электроэнергии и промышленность. Водород может использоваться во всех трех областях. При использовании в топливных элементах водородная энергия оставляет минимальные потери, а после использования в качестве побочного продукта остается только вода, из которой снова можно добывать водород.

Читайте также:
Шитье скатерти за 1 вечер: мастер-класс для новичков

Перспективы отрасли

Согласно докладу МЭА, к 2050 году мировой спрос на водород должен достичь 528 млн тонн — против 87 млн в 2020, — а его доля в мировом потреблении составит 18%, из них 10% будет приходиться на зеленый водород.

К 2050 году МЭА планирует снизить затраты на производство этого экологически чистого вида топлива до 2 $ за килограмм, что существенно ниже нынешних 10 $. Это произойдет благодаря развитию технологий ВИЭ и удешевлению производства энергии ветра и солнца.

В июне 2020 года Германия объявила о реализации национальной водородной стратегии с инвестициями в 7 млрд евро, чтобы стать лидером в этой области.

Япония, Франция, Южная Корея, Австралия, Нидерланды и Норвегия начали свой курс на водород раньше Германии, а Япония сделала это раньше всех — в декабре 2017 года.

В июле 2020 года Минэнерго подготовило план развития в РФ водородной энергетики на период 2020—2024 годов. Производить водород собираются «Росатом», «Газпром» и «Новатэк». В дорожной карте предусмотрены следующие меры:

  • поддержка пилотных проектов по производству водорода;
  • стимулы для экспортеров и покупателей на внутреннем рынке;
  • первые водородные установки запустят в 2024 году на атомных электростанциях, объектах добычи газа и переработки ископаемых.

В 2021 году HydrogenOne Capital — первый в мире инвестиционный фонд, ориентированный на зеленый водород, заявил о листинге на Лондонской бирже. Фонд инвестирует в проекты мощностью 20—100 МВт с возможностью их расширения до 500 МВт.

Как сделать ремонт и не сойти с ума

Преимущества водородной энергетики

Высокая применимость. Электрификация транспорта поможет снизить выбросы в атмосферу, но авиацию, морские и грузовые перевозки на дальние расстояния трудно перевести на использование электроэнергии, потому что для этих секторов требуется топливо с высокой плотностью энергии. Зеленый водород может удовлетворить эти потребности. Например, Airbus представил концепции самолетов с водородным двигателем и надеется ввести его в эксплуатацию к 2035 году.

Nikola строит полуприцепы, работающие как на аккумуляторных батареях, так и на водороде. Компания заявляет, что ее топливные элементы могут работать при более низких температурах, чем батареи. И они легче, что делает их более практичными для грузовиков и другой тяжелой техники. Nikola также утверждает, что дальность хода такого грузовика составит 900 миль на баке с водородом. Для сравнения: у Tesla Semi с батарейным питанием, который может быть запущен в производство в конце этого года или в 2022 году, заявленная дальность — 200—300 миль.

Также свои аналогичные модели транспорта представили компании Toyota, Honda и BMW.

Время заправки электромобиля на топливных элементах в среднем составляет менее четырех минут. При этом в отличие от батарей они не нуждаются в перезарядке. Поскольку они могут работать независимо от сети, то могут использоваться как запасные генераторы электричества или тепла.

Важный элемент перехода на водород — его применение в ЖКХ. Кроме пилотных проектов в Великобритании Лидс станет первым городом, энергоснабжение которого будет полностью водородным. Согласно плану, все газовые сети и транспортное оборудование переведут на него.

Запасы водорода практически безграничны. Так как он встречается почти всюду, его можно использовать там, где он производится. В отличие от батарей, которые не могут хранить большое количество электроэнергии в течение продолжительного времени, водород можно производить из избыточной возобновляемой энергии и хранить в больших количествах.

Энергоэффективность. Водород содержит почти в три раза больше энергии, чем ископаемое топливо, поэтому для выполнения какой-либо работы его требуется гораздо меньше. Например, по сравнению с электростанцией, работающей на сжигании топлива с КПД от 33 до 35%, водородные топливные элементы выполнят ту же функцию с КПД до 65%. Для примера, у солнечных элементов КПД — 20%, а у ветряных — 40%.

Весной 2020 года в городе Фукусима была запущена самая крупная в мире электростанция, работающая на водороде. Для питания электролизных установок на ней размещены солнечные батареи общей мощностью 20 МВт. Всего станция вырабатывает 1,2 тысячи кубических метров водорода в час.

В автомобилях топливные элементы используют 40—60% энергии топлива, а также обеспечивают сокращение его расхода на 50%.

Зеленый водород — отличная среда для хранения энергии. Например, у Германии существует проблема с энергосистемой. В ясные и ветреные дни солнечные экраны и ветряные турбины на севере производят больше электроэнергии, чем может потребить эта часть страны. Из-за этого Германия вынуждена продавать излишки электроэнергии соседним странам себе в убыток. Избыток электроэнергии из ВИЭ можно хранить в виде водорода, а затем сжигать для выработки электроэнергии, когда это необходимо.

Недостатки водородной энергетики

Стоимость зеленого водорода. Как уже говорилось выше, именно стоимость добычи самого чистого вида водорода ставит наиболее сильные препятствия в его развитии. По словам и прогнозам Минэнерго РФ, перспективы водородной энергетики связаны с удешевлением стоимости водорода, производимого электролизом воды. В качестве основных факторов обеспечения конкурентоспособности зеленого водорода рассматривается перспективное снижение капитальных затрат на электролизеры, а также стоимости электроэнергии из ВИЭ.

При масштабировании производства электролизеров их стоимость может снизиться с текущих 1000 до 200 $/кВт к 2050 году, по оценке J. P. Morgan — даже до 100 $/кВт. При реализации такого сценария к 2050 году стоимость электролизеров может снизиться до уровня менее 2 $/кг. Но с учетом применения различных программ государственного субсидирования водородной энергетики эти сроки могут быть сокращены.

Читайте также:
Суперприманка для рыбы или как увеличить свой улов в 10 раз. Приманка для рыбы своими

Водородный генератор своими руками: принцип работы устройства, схемы и описание процесса сборки

Водородный генератор

Электролизер – один из самых распространенных водородных генераторов.

Описание и принцип работы

В общем случае водородный генератор представляет собой набор металлических пластин, погруженных в дистиллированную воду. Конструкция заключена в герметичный корпус с клеммами для подключения источника электропитания и штуцером для вывода газа.

Теоретически работу водородного генератора можно представить следующим образом: между разнополярными пластинами (анод, катод), погруженными в дистиллированную воду, проходит электрический ток. При этом вода расщепляется на кислород и водород. Чем больше площадь пластин, тем больший ток проходит по воде и тем большее количество газов выделяется. Пластины подключаются поочередно (+-+- и т. д).

Область применения

В связи с тем, что сам процесс электролиза связан с использованием большого количества электроэнергии, промышленное применение электролизеров существенно ограничено. Экономически выгоднее использовать для получения водорода химические способы.

В настоящее время водородные генераторы применяют для:

  • газосварки и газорезки водородом в условиях ювелирных мастерских;
  • снижения токсичности двигателей внутреннего сгорания (ДВС) и повышения их КПД (коэффициент полезного действия);
  • повышения КПД и снижению токсичности жидкотопливных котлов.

Устройство

Немногочисленные промышленные электролизеры, которые используют для получения водорода и кислорода, изготавливают в виде стационарных установок. Электроды в них включаются биполярно, причем их количество зависит от способа включения в сеть (трансформаторное или бестрансформаторное).

Конструкции малогабаритных водородных генераторов, которые выпускаются как отечественными, так и зарубежными компаниями и используются для повышения КПД ДВС и других целей, отличаются большим разнообразием. Кроме того существует огромное количество конструкций, изготовленных своими руками. В сети Интернет о них можно найти достаточно много информации.

Учитывая, что конструкция электролизера отличается простотой и его нетрудно изготовить собственноручно, рассмотрим конструкции нескольких подобных устройств:

  1. Простейший электролизер.
  2. Водородный генератор для автомобиля.

Немного о доверчивости и наивности

Некоторые предприимчивые дельцы предлагают на продажу водородный генератор на авто. Рассказывают про обработку лазером поверхности электродов или про уникальные секретные сплавы, из которых они сделаны, специальные катализаторы воды, разработанные в научных лабораториях мира.

Всё зависит от способности мысли таких предпринимателей к полёту научной фантазии. Доверчивость может сделать вас за ваши же средства (иногда даже не малые) владельцем установки, у которой через два месяца эксплуатации разрушатся контактные пластины.

Если уж вы решили таким способом экономить, то лучше собирать установку самостоятельно. По крайней мере, не на кого потом будет пенять.

Отечественный опыт строительства водородных генераторов в домашних условиях ↑

А что у нас, в среде отечественных «кулибиных»? Интернет-форумы полны споров о возможности постройки генератора водорода своими руками. Адепты гидрогениума тычут в глаза скептикам фотками самогонных аппаратов, переделанных в установки по производству чистого топлива. Скептики: покажите конкретный пример постоянно работающего устройства. В ответ — тишина. Кто-то что-то собрал, подключил к кухонной плите, пожарил на водороде яичницу, съел. Теперь вот стоит в сарае, а к плите опять подключен газ, это проще, дешевле, безопаснее. Правда, умные люди всё же извлекают из «диванной» гидрогениумной энергетики пользу: завлекательные посты обеспечивают владельцев аккаунтов лайками, большим числом просмотров и подписчиков, что приносит неплохие деньги.

Если кто-то из читателей хочет повторить опыт гаражных мастеров, то, пожалуйста, вот достаточно подробное описание конструкции «самопального» водородного реактора. Ничего сложного.

В этом ролике нам красиво показывают, как мелкосерийное отечественное устройство обслуживает два десятка радиаторов, но не называют ни его тепловую мощность, ни себестоимость килокалории тепла.

Меры безопасности

Электролизерные установки представляют собой устройства повышенной опасности. Поэтому в процессе их изготовления, монтажа и эксплуатации необходимо строго соблюдать как общие, так и специальные меры безопасности.

Среди специальных требований наиболее важными являются:

  1. Не допускается образование взрывоопасных концентраций смеси кислорода с водородом или воздухом.
  2. Не допускается работа водородных генераторов, если в его смотровом окне не виден уровень жидкости.
  3. При выполнении ремонтных работ необходимо убедиться в полном отсутствии водорода в конечной точке системы.
  4. Возле электролизеров не разрешается пользоваться открытым огнем, электрическими нагревательными приборами и переносными лампами напряжением более 12 В.
  5. При работе с электролитом необходимо пользоваться спецодеждой, перчатками и очками.

  1. Специалисты не рекомендуют самостоятельно изготавливать автомобильные водородные генераторы. Мотивируется это тем, что автомобильный электролизер представляет собой достаточно сложное и небезопасное устройство, при изготовлении которого необходимо использовать специальные материалы и реагенты.
  2. При самостоятельной установке в автомобиль электролизера, изготовленного своими руками, необходимо исключить возможность попадания газа в камеру сгорания топливо-воздушной смеси при заглушенном двигателе. При выключении двигателя в обязательном порядке водородный генератор должен автоматически отключаться от сети электропитания автомобиля.
  3. При самостоятельном изготовлении автомобильного электролизера не забудьте оснастить его специальным водяным клапаном – барботером. Его использование позволит значительно повысить безопасность эксплуатации автомобиля.

Еще средневековый ученый Парацельс во время одного из своих экспериментов заметил, что при контакте серной кислоты с феррумом образуются воздушные пузырьки. В действительности то был водород (но не воздух, как считал ученый) – легкий бесцветный газ, не имеющий запаха, который при определенных условиях становится взрывоопасным.

В нынешнее время
отопление водородом своими руками

– вещь весьма распространенная. Действительно, водород можно получать практически в неограниченном количестве, главное, чтобы были вода и электроэнергия.

Такой способ отопления был разработан одной из итальянских компаний. Водородный котел работает, не образуя никаких вредных отходов, из-за чего считается самым экологическим и бесшумным способом обогрева дома. Инновация разработки в том, что ученым удалось добиться сжигания водорода при относительно низкой температуре (порядка 300ᵒС), а это позволило изготавливать подобные отопительные котлы из традиционных материалов.

Читайте также:
Стальные трубы для газопроводов – виды, сортамент, преимущества, требования

При работе котел выделяет только безвредный пар, и единственное, что требует затрат – это электроэнергия. А если совместить такое с солнечными панелями (гелиосистемой), то эти расходы можно и вовсе свести к нулю.

Как же все происходит? Кислород вступает в реакцию с водородом и, как мы помним из уроков химии в средних классах, образует молекулы воды. Реакция провоцируется катализаторами, в результате выделяется тепловая энергия, нагревающая воду примерно до 40ᵒС – идеальной температуры для «теплого пола».

Регулировка мощности котла позволяет добиться определенного температурного показателя, необходимого для отопления помещения с той или иной площадью. Также стоит отметить, что такие котлы считаются модульными, т. к. состоят из нескольких независимых друг от друга каналов. В каждом из каналов имеется упомянутый выше катализатор, в результате в теплообменник поступает теплоноситель, уже достигший необходимого показателя в 40ᵒС.

Критика водородного транспорта

  • Смесь водорода с воздухом взрывоопасна. Водород более опасен, чем бензин, так как горит в смеси с воздухом в более широком диапазоне концентраций. Бензин не горит при лямбда менее 0,5 и более 2, водород при таких соотношениях горит великолепно. Но водород, хранящийся в баках при высоком давлении, в случае пробоя бака очень быстро испаряется. Для транспорта разрабатываются специальные безопасные системы хранения водорода — баки с многослойными стенками, из специальных материалов и т. д. (К примеру, бак из нанотрубок, заполненных водородом.) Но всё равно это в целом удорожает весь цикл эксплуатации транспортного средства, ложась расходами на плечи потребителя.
  • Водородная силовая установка на базе традиционного ДВС значительно сложнее и дороже в обслуживании, чем обычный ДВС (особенно дизельный). По данным Массачусетского технологического института, эксплуатация водородного автомобиля на данном этапе развития водородных технологий обходится в сто раз дороже, чем бензинового.
  • Пока нет достаточного опыта эксплуатации водородного транспорта.
  • Нет возможности быстрой дозаправки в пути из канистры или от другого автомобиля.
  • Для заправки водородом требуется построить сеть заправочных станций. Для заправочных станций, заправляющих автомобили жидким водородом, стоимость оборудования выше, чем для заправочных станций, заправляющих автомобили жидким топливом (бензином, этанолом и дизельным топливом). (Согласно GM, строительство 12 тысяч водородных заправочных станций в 2005 году оценивалось в $12 млрд, то есть $1 млн на одну заправочную станцию, в то время как комплект оборудования для бензиновых заправочных станций стоит от $40 тыс., в среднем $100-200 тыс.) .
  • Цена 8 евро за литр (500 руб)..
  • Летучесть водорода самая высокая среди газов. Таким образом, водород трудно сохранить в жидком виде, это затрудняет хранение водорода, транспортировку и использование в баке, так как топливо полностью испарится из бака за короткое время. За девять дней испаряется полбака топлива BMW Hydrogen
  • В настоящий момент водород производится путём расхода значительного количества электроэнергии

Критерии выбора водородного генератора

Более безопасными характеристиками обладает водородное оборудование, изготовленное в промышленных условиях. Процесс производства учитывает показатели тестовых запусков образцов, ряда экспериментов и других научно-исследовательских мероприятий. Тогда как в домашних условиях выполняется лишь механическая сборка. Поэтому специалисты настоятельно рекомендуют приобретать котлы в специализированных магазинах, где покупка защищена гарантиями производителя.

• особенности монтажа и эксплуатации.

Кроме того, следует учесть репутацию производителя. Для этого рекомендуется предварительно ознакомиться с отзывами покупателей и отследить рейтинг самых популярных компаний. Перед приобретением нужно осмотреть корпус и доступные для обзора элементы на предмет целостности. Если производитель гарантий не даёт, от покупки такой модели стоит отказаться.

Технические характеристики

Чистота водорода в пересчете на сухой газ, % об 99,9999
Концентрация водяных паров при 20OС и 1атм, не более, ppm, 5
Суммарная производительность по водороду, приведенная к нормальным условиям, не менее, л/ч, 12
Диапазон задаваемого выходного давления водорода, ати, от 3,0 до 6,1
Стабильность выходного давления водорода, не хуже, ати, ±0,02
Время установления рабочего режима, при заглушенном выходе не более, мин, 30
Объем заливаемой дистиллированной воды, л, 1,0
Расход дистиллированной воды, не более, л/час, 0,02
Потребление воды, г/л водорода, 1,6
Средний ресурс сменного картриджа деионизационного фильтра (при максимальной производительности и односменной работе), лет, не менее, 1
Средняя потребляемая мощность:
в стационарном режиме, не более, ВА, 180
максимальная (при запуске), не более, ВА, 220
Габаритные размеры генератора, (ширина x глубина x высота), не более, мм, 230х470х450
Масса генератора. не более, кг, 16
Рабочие условия:
температура окружающего воздуха, °С, от +10 до +35
питание от однофазной сети переменного тока напряжением, В, 220 (+10 –15)%
и частотой, Гц, 50 +1
Генератор по электробезопасности соответствует требованиямs класса 1, тип Н по ГОСТ 12.2.025-76

Дополнительные технические характеристики

Контроль качества воды, заливаемой в питающий бак +
Встроенная система водоподготовки (контроль и автоматическая очистка воды, питающей электролизный модуль) +
Встроенная система автоматической регенерации фильтров тонкой очистки водорода +
Контроль влажности производимого водорода +
Контроль разгерметизации +
Возможность включения режима «СДУВКА» +
Отображение информации о работе, отдельных параметрах, неисправностях на дисплее +

Немного истории

Принцип действия водородной энергии был отмечен еще в древние времена. Известный врачеватель Парацельс при проведении своих научных экспериментов заметил, что при соединении некоторых элементов образуются пузырьки, которые он в то время принял за воздух. Позже выяснилось, что это был водород, представляющий собой газ без цвета, при определенных условиях проявляющий взрывные свойства.

Читайте также:
Толщина керамической плитки для пола

В настоящее время водород научились использовать в разных целях, в том числе – для отопления жилого дома или любых других сооружений. Эти технологии активно развивают и внедряют во множестве отраслей. Являясь новшеством на рынке научных разработок, обогрев водородом уже заинтересовал многих потребителей и продолжает набирать популярность среди широких масс.

Доказано, что водород считается не только довольно распространенным, но и легкодоступным веществом. Единственная сложность – его приходится добывать из химических соединений, чаще всего – воды.

Кислородно водородная горелка своими руками

no images were found

Так вот, это то же самое, только мощнее на два-три порядка. Эта хренотень даёт мощный, чрезвычайно горячий язык пламени тупо из воды со щёлочью. Никаких баллонов с газами, никаких редукторов, заправок и прочей мути — только подай напряжение. А если надуть ей шарик, и отпустить его с горящей ниткой…

Что нужно для получения более-менее мощного потока газа? Правильно, большая площадь электродов, причём объём газа в секунду ей прямо пропорционален. Не буду вдаваться в расчёты, тем более что сам я их не проводил, просто сообщу оптимальные параметры. Суммарная площадь электродов для достойного внимания потока газа должна быть не менее 1000 см^2 (суммарно по аноду и катоду), желательно — от 2000 см^2. Плотность тока должна быть порядка 0.08-0.15А/см^2 (8-15А/дм^2): при большем токе будет иметь место перегрев электролита и закипание — то есть, пена, тысячи её; при меньшем — теряем в газовыделении. Падение на одной паре электродов для такого тока получается 2-3 вольта, в зависимости от концентрации электролита (я взял 10%, это соответствует примерно 2.2-2.3 вольта падения). При таких обстоятельствах качать две огромных пластины сотнями ампер тока при двух вольтах представляется не очень разумным решением. Гораздо лучше соединить несколько ячеек последовательно: тогда мы сможем увеличить рабочее напряжение и площадь электродов во много раз при том же токе. А теперь осталось только сообразить, что одна пластина электрода может быть с одной стороны катодом одной ячейки, а с другой — анодом другой. Короче, просто набираем бигмак из чередующихся кольцеобразными прокладками пластин. Больше пластин — больше напряжение при том же токе; больше площадь одной каждой пластины — больший ток при том же напряжении. Увеличение числа пластин увеличивает суммарное падение на них напряжения. На схеме всё понятно видно.

В каждой пластине необходимо проделать отверстия снизу и сверху на расстояниях чуть меньше диаметра прокладки друг от друга (но не менее 0.5-1 см от края прокладки) — для газообмена и для распределения электролита по ячейкам. Хватит где-то 5 мм сверла.

Щёлочь. Подойдёт NaOH или KOH, желательно чистый, а не технический. Начинать с концентрации 10% по массе (в дистиллированной воде), дальше экспериментировать. Выше концентрация — выше ток, но больше пены.

Стягивающие пластины. Требуется нечто очень слабо гнущееся и жёсткое. Идеально и классика постройки — толстое, двухсантиметровое оргстекло. В нём же можно проделать выводы и резьбу под газ и доп. топливный бачок. У меня не было оргстекла, я просто впаял медные трубки в последнюю нержавеющую пластину, а для стяжек использовал 27 мм фанеру.

Перво-наперво следует сделать водный затвор. Водород-кислородная смесь, HHO, невероятно злая штуковина. Она с лёгкостью детонирует, да и сгорает весьма резво, не требуя притом никаких окислителей (кислород-то есть).

Варианты беседок и террас с хозблоками, обзор конструкций, способы изготовления

Когда места на участке в обрез, когда обустройство дачи не предполагает возведения капитального дома или для него пока только создается проект, необходима беседка с хозблоком.

Сама по себе хозяйственная постройка незаменима на любом загородном участке, особенно, где есть огород и сад. Чаще всего она возводится своими руками, так как не является сложной конструкцией. А еще, самому хозяину лучше известно, какое предназначение должен выполнять такой сарай и какого он будет размера, формы.

  • Хозблок нередко делают в виде индивидуального сооружения с одной функцией – хранение садового инвентаря. Уместно это, когда площадь дачи обширная и нет необходимости в других дополнительных бытовых сооружениях.

    Фото: архитектурный проект беседки с хозблоком и зоной барбекю

    Чаще всего проект выполняют совмещенным:

    • бытовка, душ, туалет;
    • сарай, летняя кухня, навес для автомобиля или дров, гараж;
    • хозблок, баня, комната отдыха;
    • помещение для инструментов, беседка, печь и многое другое (вариантов комбинаций может быть бесконечно много).

    3D модель беседки с гаражом

    Проект летней кухни с хозяйственной комнатой

    Самым распространенным считается проект совмещения бытовки с верандой или беседкой. Они строятся под одной крышей или имеют индивидуальные кровли, изготавливаются из различных материалов, имеют свои особенности конструкций.

    Садовая беседка из дерева с кладовкой

    Проект навеса с хозблоком

    Материалы для строительства

    Сам домик для хозяйственных нужд несложно построить своими руками из таких материалов:

    1. Металл – требуется опыт работы со сварочным аппаратом и изготовления кованых элементов. Хороши такие конструкции тем, что имеют малый вес, не требуют фундамента, могут переноситься, при необходимости, на другое место. Очень органично выглядят хозпостройки, совмещенные с летней верандой из ажурного кованого металла.
    2. Деревянные беседки с бытовкой или кухней отлично впишутся в любой ландшафтный дизайн дачи. Их вполне по силам изготовить своими руками тем, кто имеет хоть малейший опыт в плотницком деле. Дерево – природный, теплый и достаточно легкий материал, не требующий основательного фундамента и сложного ухода.

    Проект постройки сельхозназначения с дровником

    Удачнее всего считаются деревянные конструкции из бруса. Их можно возводить как на участке с уже существующим домом, так и вместо него. Кроме того, в любой момент такую бытовку легко переделать своими руками, в зависимости от новых требований: перекрасить, обшить сайдингом, дополнить верандой или навесом.

    Фундамент для беседки-сарая из дерева

    Если место расположения дачи – участок с песчаным грунтом и низким прохождением грунтовых вод, для основы бытовки достаточно опор в виде свай или столбов. Их располагают по углам будущего сооружения.

    Для свайного фундамента можно использовать асбестоцементную трубу, диаметром от 15 см. В подготовленные отверстия в грунте засыпают песчаную подушку и трамбуют ее. Затем вставляют отрезок трубы нужного размера и укрепляют его металлическими штырями. Заливают опору на 1/3 длины бетоном и слегка приподнимают, чтобы раствор попал под основание трубы, тогда она будет стоять прочно.

    Технология установки свай под фундамент

    Можно внутрь вставить металлическую арматуру или анкерные болты для соединения с брусом, если проект предполагает более тяжелую конструкцию. Либо сделать столбчатые колонны из кирпича по углам постройки. Для дачи с пучинистым влажным грунтом нужен ленточный фундамент, он более надежный.

    Проще всего установить в качестве основы пескобетонные блоки. Для этого снять дерн на глубину около 30 см и засыпать 15 см песка, утрамбовать. Сверху уложить блоки в несколько рядов друг на друга. Подходит такой способ только для хороших почв, без лишней влаги, и для построек на возвышенности. Тогда они вполне выдержат вес летнего домика из бруса.

    Установка обвязки на столбчатый фундамент

    Возведение каркаса постройки

    Любой фундамент следует тщательно гидроизолировать. Для этого используют рубероид, толь, битумную мастику. Их прокладывают поверх опор, чтобы деревянные элементы конструкции не имели с ними прямого контакта.

    Теперь делается нижняя обвязка – квадрат из бруса, сечением 15×15 сантиметров. Деревянные балки укладывают на опоры и фиксируют анкерными болтами. На них укладывают лаги – поперечные балки для поддержания пола. Для них достаточно бруса размером 10×10 см.

  • Важно помнить, что все деревянные элементы нужно тщательно обработать антисептическими растворами и специальной пропиткой от насекомых и плесени. Ведь, будущая беседка с хозблоком, возведенная своими руками, будет находиться под открытым небом и ощутит на себе влияние погодных условий. Делать обработку следует на подготовительном этапе, до непосредственного строительства.

    После установки лаг строго вертикально закрепляют каркасные балки. Их следует располагать в углах сооружения и в местах, где проект предполагает проемы для дверей и окон. Для балок нужны 2,5-3-х метровые отрезки бруса сечением 10×10 см. Здесь лучше применить деревянные скосы для большей жесткости всей конструкции. Их располагают по диагонали между вертикальными стойками.

    Завершают каркас верхней обвязкой из доски 10×5 или 15×5 см. Она нужна для жесткости каркаса и для соединения его с крышей. На эти доски будут опираться стропила.

    Монтаж каркаса из бруса

    Конструкция кровли

    Деревянные доски для стропил должны иметь прорези в местах соединения их с брусом. Если проект предусматривает устройство односкатной крыши, можно вертикальные стойки с одной стороны делать длиннее, тем самым, обеспечив наклон кровли. В любом случае, нужна скатная крыша, чтобы с нее хорошо сходил снег и не задерживалась вода.

    Облицевать ее можно любыми кровельными материалами: битумной черепицей, металлическими листами, шифером, деревом, металлочерепицей.

    Также проект может учитывать совместную постройку под одной крышей или выполнение двух различных покрытий. Например, бытовка накрыта черепицей, а беседка – профнастилом.

    Фото: садовый домик с односкатной крышей

    3D модель Г-образной беседки с дровником

    Финишная отделка

    Деревянные беседки-сарайчики нуждаются в хорошем регулярном уходе. Следует каждые полгода обновлять лакокрасочный слой. Можно сделать пропитку дерева подогретой олифой, которую наносят в два слоя. Сверху покрыть масляной краской или оставить в натуральном виде. Чтобы дерево не гнило, домик из бруса для хозяйственных нужд дачи лучше устанавливать на специальный помост – ровную площадку из бетона, досок, тротуарной плитки.

    Фото: терраса с комнатой отдыха и хозблоком с двускатной крышей

    Украсить построенную своими руками бытовку помогут горшочки с цветами на окнах, стена из зеленых вьющихся растений, садовая мебель.

    Фото: беседка совмещенная с сараем под общей крышей

    Изготовленная из бруса веранда для дачи, совмещенная с хозяйственной постройкой, станет местом для отдыха от огородных работ и просто для приятного проведения времени с семьей.

    Понятно, что постройка из бруса не так проста, как может показаться на первый взгляд. Потребуется время, материальные затраты и физические силы хозяина. Зато участок обзаведется таким необходимым для дачи сооружением, как бытовка с верандой, построенные под одной крышей. К тому же, любая, выполненная своими руками работа, греет душу и повышает самооценку.

  • Рейтинг
    ( Пока оценок нет )
    Понравилась статья? Поделиться с друзьями:
    Добавить комментарий

    ;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: