Увеличение мощности реальной катушки индуктивности

Электрическая цепь с реальной катушкой индуктивности. Схема. Мощность катушки индуктивности. Коэффициент мощности. Способы ее улучшения.

Реальная катушка в цепи переменного тока

Реальная катушка в отличии от идеальной имеет не только индуктивность, но и активное сопротивление, поэтому при протекании переменного тока в ней сопровождается не только изменением энергии в магнитном поле, но и преобразованием электрической энергии в другой вид. В частности, в проводе катушки электрическая энергия преобразуется в тепло в соответствии с законом Ленца — Джоуля.

Ранее было выяснено, что в цепи переменного тока процесс преобразования электрической энергии в другой вид характеризуется активной мощностью цепи Р, а изменение энергии в магнитном поле —реактивной мощностью Q.

В реальной катушке имеют место оба процесса, т. е. ее активная и реактивная мощности отличны от нуля. Поэтому одна реальная катушка в схеме замещения должна быть представлена активным и реактивным элементами.

Схема замещения катушки с последовательным соединением элементов

В схеме с последовательным соединением элементов реальная катушка характеризуется активным сопротивлением R и индуктивностью L.

Активное сопротивление определяется величиной мощности потерь

R = P/I 2

а индуктивность — конструкцией катушки. Предположим, что ток в катушке (рис. 13.9, а) выражается уравнением i = Imsinωt. Требуется определить напряжение в цепи и мощность.
При переменном токе в катушке возникает э. д. с. Самоиндукции eL поэтому ток зависит от действия приложенного напряжения и эдс eL. Уравнение электрического равновесия цепи, составленное по второму закону Кирхгофа, имеет вид:

Приложенное к катушке напряжение состоит из двух слагаемых, одно из которых uR равно падению напряжения в активном сопротивлении, а другоеuL уравновешивает эдс самоиндукции.

В соответствии с этим катушку в схеме замещения можно представить активным и индуктивным сопротивлениями, соединенными последовательно (рис. 13.9, б).
Дополнительно заметим, что оба слагаемых в правой части равенства (13.12) являются синусоидальными функциями времени. Согласно выводам полученных в этих предыдущих двух (первая, вторая) статьях получим —uR совпадает по фазе с током, UL опережает ток на 90°.

Поэтому: u = R*Imsinωt + ωLImsin(ωt+π/2).

Коэффициентом мощности или cos φ электрической сети называется отношение активной мощности к полной мощности нагрузки расчетного участка.

cos φ = P/S, где:

φ – коэффициент мощности;

P – активная мощность Вт;

S – полная мощность ВА;

Коэффициент мощности можно определить как расчетным путем, так и измерить специальными приборами. Только в том случае, когда нагрузка имеет исключительно активный характер, cos φ равен единице. В основном же, активная мощность меньше полной и поэтому коэффициент мощности меньше единицы.

Способы улучшения коэффициента мощности действующей электроустановки. Имеется два понятия коэффициента мощности: естественный коэффициент мощности — при отсутствии каких-либо компенсаторов реактивной энергии и общий, искусственный коэффициент мощности – фактически достигнутое значение коэффициента мощности установки за счет каких-либо компенсаторов реактивной энергии, поэтому способы улучшения коэффициента мощности технологического процесса можно разделить на две группы.

Мероприятия по повышению естественного коэффициента: правильный выбор электродвигательных устройств по требуемой механической мощности (нагрузке ЭДУ Мс или Р); устранение холостых ходов силовых трансформаторов – перераспределение нагрузки между работающими трансформаторами; устранение режимов холостых ходов электродвигательных устройств и сварочных трансформаторов, агрегатов и аппаратов – применение ограничителей РХХ и схем переключения с «треугольника» на «звезду»; применение многодвигательных приводов и систем автоматической адаптации к нагрузке.

Дата добавления: 2018-06-27 ; просмотров: 1518 ; Мы поможем в написании вашей работы!

Катушка индуктивности

Что такое катушка индуктивности

Что вы себе представляете под словом «катушка» ? Ну… это, наверное, какая-нибудь «фиговинка», на которой намотаны нитки, леска, веревка, да что угодно! Катушка индуктивности представляет из себя точь-в-точь то же самое, но вместо нитки, лески или чего-нибудь еще там намотана обыкновенная медная проволока в изоляции.

Изоляция может быть из бесцветного лака, из ПВХ-изоляции и даже из матерчатой. Тут фишка такая, что хоть и провода в катушке индуктивности очень плотно прилегают к друг другу, они все равно изолированы друг от друга. Если будете мотать катушки индуктивности своими руками, ни в коем случае не вздумайте брать обычный медный голый провод!

Индуктивность

Любая катушка индуктивности обладает индуктивностью. Индуктивность катушки измеряется в Генри (Гн), обозначается буковкой L и замеряется с помощью LC — метра.

Что такое индуктивность? Если через провод пропустить электрический ток, то он вокруг себя создаст магнитное поле:

В — магнитное поле, Вб

А давайте возьмем и намотаем в спиральку этот провод и подадим на его концы напряжение

И у нас получится вот такая картина с магнитными силовыми линиями:

Грубо говоря, чем больше линий магнитного поля пересекут площадь этого соленоида, в нашем случае площадь цилиндра, тем больше будет магнитный поток (Ф). Так как через катушку течет электрический ток, значит, через нее проходит ток с Силой тока (I), а коэффициент между магнитным потоком и силой тока называется индуктивностью и вычисляется по формуле:

С научной же точки зрения, индуктивность — это способность извлекать энергию из источника электрического тока и сохранять ее в виде магнитного поля. Если ток в катушке увеличивается, магнитное поле вокруг катушки расширяется, а если ток уменьшается , то магнитное поле сжимается.

Читайте также:
Утепление пеноизолом - плюсы и минусы технологии

Самоиндукция

Катушка индуктивности обладает также очень интересным свойством. При подаче на катушку постоянного напряжения, в катушке возникает на короткий промежуток времени противоположное напряжение.

Это противоположное напряжение называется ЭДС самоиндукции. Эта ЭДС зависит от значения индуктивности катушки. Поэтому, в момент подачи напряжения на катушку сила тока в течение долей секунд плавно меняет свое значение от 0 до некоторого значения, потому что напряжение, в момент подачи электрического тока, также меняет свое значение от ноля и до установившегося значения. Согласно Закону Ома:

I — сила тока в катушке , А

U — напряжение в катушке, В

R — сопротивление катушки, Ом

Как мы видим по формуле, напряжение меняется от нуля и до напряжения, подаваемого в катушку, следовательно и ток тоже будет меняться от нуля и до какого то значения. Сопротивление катушки для постоянного тока также постоянное.

И второй феномен в катушке индуктивности заключается в том, что если мы разомкнем цепь катушка индуктивности — источник тока, то у нас ЭДС самоиндукции будет суммироваться к напряжению, которое мы уже подали на катушку.

То есть как только мы разрываем цепь, на катушке напряжение в этот момент может быть в разы больше, чем было до размыкания цепи, а сила тока в цепи катушки будет тихонько падать, так как ЭДС самоиндукции будет поддерживать убывающее напряжение.

Сделаем первые выводы о работе катушки индуктивности при подаче на нее постоянного тока. При подаче на катушку электрического тока, сила тока будет плавно увеличиваться, а при снятии электрического тока с катушки, сила тока будет плавно убывать до нуля. Короче говоря, сила тока в катушке мгновенно измениться не может.

Типы катушек индуктивности

Катушки индуктивности делятся в основном на два класса: с магнитным и немагнитным сердечником. Снизу на фото катушка с немагнитным сердечником.

Но где у нее сердечник? Воздух — это немагнитный сердечник :-). Такие катушки также могут быть намотаны на какой-нибудь цилиндрической бумажной трубочке. Индуктивность катушек с немагнитным сердечником используется, когда индуктивность не превышает 5 миллигенри.

А вот катушки индуктивности с сердечником:

В основном используют сердечники из феррита и железных пластин. Сердечники повышают индуктивность катушек в разы. Сердечники в виде кольца (тороидальные) позволяют получить большую индуктивность, нежели просто сердечники из цилиндра.

Для катушек средней индуктивности используются ферритовые сердечники:

Катушки с большой индуктивностью делают как трансформатор с железным сердечником, но с одной обмоткой, в отличие от трансформатора.

Дроссель

Также есть особый вид катушек индуктивностей. Это так называемые дроссели. Дроссель — это катушка индуктивности, задача которой состоит в том, чтобы создать в цепи большое сопротивление для переменного тока, чтобы подавить токи высоких частот.

Постоянный ток через дроссель проходит без проблем. Почему это происходит, можете прочитать в этой статье. Обычно дроссели включаются в цепях питания усилительных устройств. Дроссели предназначены для защиты источников питания от попадания в них высокочастотных сигналов (ВЧ-сигналов). На низких частотах (НЧ) они используются в фильтрах цепей питания и обычно имеют металлические или ферритовые сердечники. Ниже на фото силовые дроссели:

Также существует еще один особый вид дросселей — это сдвоенный дроссель. Он представляет из себя две встречно намотанных катушки индуктивности. За счет встречной намотки и взаимной индукции он более эффективен. Сдвоенные дроссели получили широкое распространение в качестве входных фильтров блоков питания, а также в звуковой технике.

Что влияет на индуктивность?

От каких факторов зависит индуктивность катушки? Давайте проведем несколько опытов. Я намотал катушку с немагнитным сердечником. Ее индуктивность настолько мала, что LC — метр мне показывает ноль.

Имеется ферритовый сердечник

Начинаю вводить катушку в сердечник на самый край

LC-метр показывает 21 микрогенри.

Ввожу катушку на середину феррита

35 микрогенри. Уже лучше.

Продолжаю вводить катушку на правый край феррита

20 микрогенри. Делаем вывод, самая большая индуктивность на цилиндрическом феррите возникает в его середине. Поэтому, если будете мотать на цилиндрике, старайтесь мотать в середине феррита. Это свойство используется для плавного изменения индуктивности в переменных катушках индуктивности:

1 — это каркас катушки

2 — это витки катушки

3 — сердечник, у которого сверху пазик под маленькую отвертку. Вкручивая или выкручивая сердечник, мы тем самым изменяем индуктивность катушки.

Экспериментируем дальше. Давайте попробуем сжимать и разжимать витки катушки. Для начала ставим ее в середину и начинаем сжимать витки

Индуктивность стала почти 50 микрогенри!

А давайте-ка попробуем расправим витки по всему ферриту

13 микрогенри. Делаем вывод: для максимальной индуктивности мотать катушку надо «виток к витку».

Убавим витки катушки в два раза. Было 24 витка, стало 12.

Совсем маленькая индуктивность. Убавил количество витков в 2 раза, индуктивность уменьшилась в 10 раз. Вывод: чем меньше количество витков — тем меньше индуктивность и наоборот. Индуктивность меняется не прямолинейно виткам.

Давайте поэкспериментируем с ферритовым кольцом.

Отдалим витки катушки друг от друга

Хм, также 15 микрогенри. Делаем вывод: расстояние от витка до витка не играет никакой роли в катушке индуктивности тороидального исполнения.

Мотнем побольше витков. Было 3 витка, стало 9.

Читайте также:
Чем Рубильник Отличается от Автомата, Особенности Конструкций

Офигеть! Увеличил количество витков в 3 раза, а индуктивность увеличилась в 12 раз! Вывод: индуктивность меняется не прямолинейно виткам.

Если верить формулам для расчета индуктивностей, индуктивность зависит от «витков в квадрате». Эти формулы я здесь выкладывать не буду, потому как не вижу надобности. Скажу только, что индуктивность зависит еще от таких параметров, как сердечник (из какого материала он сделан), площадь поперечного сечения сердечника, длина катушки.

Обозначение на схемах

Последовательное и параллельное соединение катушек индуктивности

При последовательном соединении индуктивностей, их общая индуктивность будет равняться сумме индуктивностей.

А при параллельном соединении получаем вот так:

При соединении индуктивностей должно выполняться правило, чтобы они были пространственно разнесены на плате. Это связано с тем, что при близком расположении друг друга их магнитные поля будут влиять с друг другом, и поэтому показания индуктивностей будут неверны. Не ставьте на одну железную ось две и более тороидальных катушек. Это может привести к неправильным показаниям общей индуктивности.

Резюме

Катушка индуктивности играет в электронике очень большую роль, особенно в приемопередающей аппаратуре. На катушках индуктивности строятся также различные фильтры для электронной радиоаппаратуры, а в электротехнике ее используют также в качестве ограничителя скачка силы тока.

Ребята из Паяльника забабахали очень неплохой видос про катушку индуктивности. Советую посмотреть в обязательном порядке:

Реальная катушка в цепи переменного тока

Реальная катушка в отличии от идеальной имеет не только индуктивность, но и активное сопротивление, поэтому при протекании переменного тока в ней сопровождается не только изменением энергии в магнитном поле, но и преобразованием электрической энергии в другой вид. В частности, в проводе катушки электрическая энергия преобразуется в тепло в соответствии с законом Ленца — Джоуля.

Ранее было выяснено, что в цепи переменного тока процесс преобразования электрической энергии в другой вид характеризуется активной мощностью цепи Р, а изменение энергии в магнитном поле — реактивной мощностью Q.

В реальной катушке имеют место оба процесса, т. е. ее активная и реактивная мощности отличны от нуля. Поэтому одна реальная катушка в схеме замещения должна быть представлена активным и реактивным элементами.

Схема замещения катушки с последовательным соединением элементов

В схеме с последовательным соединением элементов реальная катушка характеризуется активным сопротивлением R и индуктивностью L.

Активное сопротивление определяется величиной мощности потерь

R = P/I 2

а индуктивность — конструкцией катушки. Предположим, что ток в катушке (рис. 13.9, а) выражается уравнением i = Imsinωt. Требуется определить напряжение в цепи и мощность.
При переменном токе в катушке возникает э. д. с. самоиндукции eL поэтому ток зависит от действия приложенного напряжения и эдс eL. Уравнение электрического равновесия цепи, составленное по второму закону Кирхгофа, имеет вид:

Приложенное к катушке напряжение состоит из двух слагаемых,одно из которых uR равно падению напряжения в активном сопротивлении, а другое uL уравновешивает эдс самоиндукции.

В соответствии с этим катушку в схеме замещения можно представить активным и индуктивным сопротивлениями, соединенными последовательно (рис. 13.9, б).
Дополнительно заметим, что оба слагаемых в правой части равенства (13.12) являются синусоидальными функциями времени. Согласно выводам полученных в этих предыдущих двух (первая, вторая) статьях получим — uR совпадает по фазе с током, UL опережает ток на 90°.

u = R*Imsinωt + ωLImsin(ωt+π/2).

Векторная диаграмма реальной катушки и полное её сопротивление

Несовпадение по фазе слагаемых в выражении (13.12) затрудняет определение амплитуды и действующей величины приложенного к цепи напряжения U. Поэтому воспользуемся векторным способом сложения синусоидальных величин. Амплитуды составляющих общего напряжения

а действующие величины

Вектор общего напряжения

Для того чтобы найти величину вектора U, построим векторную диаграмму (рис. 13.10, а), предварительно выбрав масштабы тока Mi и напряжения Мu.

За исходный вектор диаграммы принимаем вектор тока I. Направление этого вектора совпадает с положительным направлением оси, от которой отсчитываются фазовые углы (начальная фаза заданного тока Ψi =0). Как и ранее, эту ось удобно (но не обязательно) направить по горизонтали.

Вектор UR по направлению совпадает с вектором тока I, а вектор UL направлен перпендикулярно вектору I с положительным углом.

Из диаграммы видно, что вектор тока I общего напряжения U отражает вектор тока I на угол φ>0, но φ 2 Z (13.21)

Величину полной мощности можно получить из выражения (13.22), которое легко доказать на основании формул (13.19) и (13.20):

(13.22)

Мощности S, Р, Q графически можно выразить сторонами прямоугольного треугольника (см. рис. 13.10, в). Треугольник мощностей получается из треугольника напряжений, если стороны последнего, выраженные в единицах напряжения, умножить на ток. Из треугольника мощностей можно определить

cosφ = P/S; sinφ = Q/S; tgφ = Q/P. (13.23)

Полная мощность имеет ту же размерность, что Р и Q, но для различия единицу полной мощности называют вольт-ампер (В · А).

Активная мощность Р меньше или равна полной мощности цепи.
Отношение активной мощности цепи к ее полной мощности P/S =
= cosφ называют коэффициентом мощности.

Назначение приемников электрической энергии — преобразование
ее в другие виды энергии. Поэтому колебания энергии в цепи не только
бесполезны, но и вредны, так как при этом в приемнике не совершается
полного преобразования электрической энергии в работу или тепло,
а в соединительных проводах она теряется.

Читайте также:
Шелковое постельное белье: плюсы и минусы

Схема замещения реальной катушки с параллельным соединением элементов

Для реальной катушки можно составить и другую расчетную схему — с параллельным соединением двух ветвей: с активной G и индуктивной BL проводимостями. На рис. 13.12, б эта схема показана в сравнении со схемой последовательного соединения активного и индуктивного сопротивлений (рис. 13.12, а), рассмотренной ранее.
Покажем, что схемы рис. 13.12, а, б эквивалентны в том смысле, что при одинаковом напряжении сохраняются неизменными ток в неразветвленной части цепи, активная и реактивная мощности.

Вектор тока I можно разложить на две взаимно перпендикулярные составляющие и в соответствии со схемой и векторной диаграммой на рис. 13.12, б выразить векторным равенством

Для схемы параллельного соединения активного и индуктивного элементов общим является приложенное напряжение, а токи разные: IG —ток в ветви с активной проводимостью, по фазе совпадает с напряжением; IL — ток в ветви с индуктивной проводимостью, по фазе отстает от напряжения на угол 90°.

Вектор тока I и его составляющие IG и IL образуют прямоугольный треугольник, поэтому

Составляющая тока в активном элементе

Проекция вектора тока I на направление напряжения называется активной составляющей вектора тока и обозначается Iа. Для катушки по схеме на рис. 13.12, б Ia = IG.

Составляющая тока в реактивном элементе

Проекция вектора тока I на направление, перпендикулярное вектору напряжения, называется реактивной составляющей вектора тока и обозначается . Для катушки Iр = IL .

Стороны треугольника токов, выраженные в единицах тока, можно разделить на напряжение U и получить подобный треугольник проводимостей, катетами которого являются активная G = IG/U и индуктивная ВL = IL/U проводимости, а гипотенузой — величина Y = I/U, называемая полной проводимостью цепи.

Из треугольника проводимостей и с учетом ранее полученных выражений из треугольника сопротивлений получим

Катушка индуктивности: параметры и характеристики.

Индуктивность в цепи постоянного тока

Для лучшего понимания происходящих процессов в катушке, рассмотрим, что происходит в катушке при подаче на нее постоянного напряжения.
При подключении источника питания к катушке в ней начинает протекать ток, который создает вокруг неё магнитное поле.
Магнитные силовые линии поля распространяются через витки катушки наружу пересекая их, и образуют при этом ЭДС самоиндукции.
Эта ЭДС, согласно правилу Ленца, будет препятствовать мгновенному нарастанию тока в катушке. Нарастание тока происходит постепенно, по экспоненциальному закону.
Через небольшой промежуток времени переходной процесс заканчивается, и ток достигает своего нормального значения.
Продолжительность нарастания тока в секундах определяется по формуле:

где L – индуктивность катушки в генри , а R – общее сопротивление всей цепи в омах .
Если, к примеру, индуктивность катушки L=0,6 Г, а сопротивление цепи R=60 Ом, тогда длительность переходного процесса будет равна:
t=3•0,6/60=0,03 сек.

При отключении батареи от катушки индуктивность тоже происходит переходный процесс (такой опыт с первичной обмоткой трансформатора показан на странице “Электромагнетизм” рис.е).
В этом случае силовые магнитные линии будут приближаться к центру катушки опять пересекая ее витки. Создается ЭДС самоиндукции, которая уже направлена не против тока, а (опять же по правилу Ленца) совпадающая с направлением прерванного тока.

Если катушка имеет большую индуктивность (в нашем опыте катушкой является первичная обмотки трансформатора с большим количеством витков и значительным железным сердечником) и через нее протекал большой ток, то тогда ЭДС самоиндукции, появляющая на концах катушки индуктивности, может достигать величины во много раз больше напряжения источника питания.
Это объясняется тем, что при размыкании питающей сети энергия, запасенная в магнитном поле катушки, не исчезает, а превращается в ток.
Напряжение между концами катушки индуктивности может достигать таких значений, которое способно привести к пробою между обмотками, а так же выводу из строя полупроводниковых приборов. Это надо надо учитывать на практике при работе с приборами, имеющие катушки с большой индуктивностью через которые проходит значительный ток.

Индуктивность в цепи переменного тока

Для опытов с постоянным током катушка индуктивности намотана тонким проводом с большим количеством витков.
Это делается для того, чтобы при подаче на нее напряжения с мощного источника питания витки катушки не перегорели, т.к. при намотке витков толстым проводом сопротивление будет маленьким, а ток через нее большой (по закону Ома для постоянного тока I=U/R) и она может сгореть.
Сопротивление катушки индуктивности постоянному току (которое можно измерить мультиметром) называется активным сопротивлением.

Будет иначе, если в цепь катушки подать переменный ток.
При этом магнитное поле катушки индуктивности становится тоже переменным.
На рисунке показано, как меняется магнитное поле при синусоидальном токе. Во время периода магнитное поле меняет как свою силу, так и свое направление по синусоидальному закону. А это значит, что при этом возникает ЭДС самоиндукции, которая, согласно правилу Ленца, будет препятствовать приложенному извне напряжению.

Рассмотрим график происходящих процессов в катушке индуктивности.
При включения катушки в цепь переменного тока в первую четверть периода ( 0º-90º ) на катушку поступает нарастающее напряжение и ее магнитное поле “расширяется”, накапливая магнитную энергию. Ток, в этот момент, противодействующей ЭДС самоиндукции, максимальный и противоположный по знаку с напряжением на катушке.
За другую четверть периода ( 90º-180º ), когда напряжение на катушке индуктивности уменьшается, магнитное поле “сворачивается”, индуцируя ЭДС самоиндукции, которое совпадает с направлением тока. Этот ток самоиндукции в катушке старается уже “помочь” уменьшающему переменному току сохранить достигнутый большой магнитный поток. В этот полупериод катушка индуктивности уже не потребляет, а отдает энергию обратно генератору.
Следовательно, происходит постоянный обмен энергий между генератором и катушкой. А это означает, что средняя мощность потребления катушки равна нулю.
Благодаря разнице фаз тока и напряжения в 90º, катушка индуктивности имеет реактивную мощность и, соответственно, реактивное сопротивление , как и конденсатор. Разница лишь в том, что в катушке индуктивности напряжение опережает ток, а в конденсаторе – наоборот.
Реактивное (индуктивное) сопротивление катушки, в отличии от ее активного сопротивления , не вызывает безвозвратных потерь энергии.

Читайте также:
Холодильник с большой морозильной камерой

Допустим, возьмем идеальную катушку , в которой не учитываются сопротивления провода и другие потери.
Тогда катушка индуктивности окажет переменному напряжению индуктивное сопротивление XL ,которое измеряется в омах и вычисляется по формуле:

где f – частота тока в герцах (Гц), а L – индуктивность катушки в генри (Г).
Отсюда видно, что величина индуктивного сопротивления катушки зависит от частоты и индуктивности. Чем выше частота тока и больше индуктивность катушки, тем больше индуктивное сопротивление.

К примеру, найдем индуктивное сопротивление катушки индуктивностью 5Г на частоте 50Гц.
XL=2π•50•5=1570 Ом.
На частоте 1кГц эта катушка будет иметь индуктивное сопротивление 31кОм, а на 1МГц – 31МОм. На графике показана зависимость упомянутой катушки от частоты.

Теперь, зная значение индуктивного сопротивления, можно записать закон Ома при переменном токе через катушку:

Например,найдем ток, который протекает через идеальную катушку с индуктивностью L=500 мкГ, если ее подключить к переменному напряжению U=0,4 В и частотой f=500 кГц.
I= 0,4/2•3,14•5•10 3 •500•10 -6 =0,25 мА

В реальной катушке нужно учитывать не только индуктивное сопротивление, но и сопротивление потерь Rпот.
На низких частотах Rпот равно только сопротивлению провода катушки. При повышении частоты на катушке сопротивление потерь будет возрастать за счет появления других потерь (вихревые токи, поверхностный эффект проводника и т.д.) (рис. а ).
Поэтому полное сопротивление катушки индуктивности переменному току на средних частотах равно:

и называется импедансом.
На высоких частотах начинает оказывать еще влияние cобственная (паразитная) емкость катушки Спараз , которая шунтирует индуктивность (рис. b ).

Основными параметрами высокочастотных катушек индуктивности являются индуктивность, добротность и собственная емкость .
Индуктивность зависит от количества витков, размера катушки и наличия ферромагнитного сердечника. Чем больше намотано витков на катушке, тем больше ее индуктивность. А наличие сердечника увеличит индуктивность катушки.
Добротность определяет качество катушки индуктивности и равна отношению индукнивного сопротивления к сопротивлению потерь:

Чем больше добротность, тем качественнее катушка. Катушкой хорошего качества считается катушка с добротностью от 50 до 200.
Чтобы достигнуть такого качества используют следующие средства:
– применением сердечников, при которых увеличивается индуктивность при меньшем числе витков катушки (т.е. уменьшается сопротивление провода);
– увеличение толщины провода, что, правда, увеличит габариты катушки;
– в диапазоне длинных и средних волн применение провода литцендрат, который состоит из определенного количества проволочек изолированных друг от друга.
Собственная емкость катушки индуктивности обусловлена емкостью обмотки и является нежелательной. Для ее уменьшения применяются различные способы намотки катушки.
Одним из способов является перекрестная намотка типа “универсаль” (рис. c ). Так же применяется намотка витков не плотно друг к другу, а на определенном расстоянии с принудительным шагом)(рис. d,e ).

Индуктивность

Выше мы рассматривали два основных понятия в электротехнике — идеальный генератор напряжения и идеальный генератор тока.

Идеальный генератор напряжения выдает заданное напряжения U (давление в водопроводной аналогии) на любой нагрузке (сопротивлении внешней цепи).

При этом в соответствии с законом Ома I=U/R, даже если R стремится к нулю, а ток возрастает до бесконечности.

Внутренне сопротивление идеального генератора напряжения равно 0.

Идеальный генератор тока выдает заданный ток I (поток в водопроводной аналогии), даже если сопротивление внешней цепи стремится к бесконечности. Напряжение на нагрузке при этом также стремится к бесконечности U=I*R.

Внутреннее сопротивление идеального генератора тока равно ∞.

Тут можно увидеть определенную симметрию, дуализм.

Мы рассматривали конденсатор С который может накапливать заряд (потому и называется — емкость) С=Q/U. Чем больше емкость, тем медленнее растет напряжение (давление) при закачке в конденсатор заряда U=Q/C.

Если емкость заряда очень большая (стремится к бесконечности), то такой конденсатор бесконечной емкости будет являться идеальным генератором напряжения. Он никогда не разрядится и при этом может выдать ток любой величины, и напряжение на нем будет оставаться постоянным.

Симметричным (дуальным) к конденсатору элементом будет являться индуктивность. Индуктивность обозначается буквой L (см схему ниже).

Обычно сам электронный компонент называется катушка индуктивности, а его параметр — индуктивность L.

рис 13. Подключение катушки индуктивности к генератору напряжения.

Если конденсатор является генератором напряжения, то индуктивность является генератором тока. Индуктивность стремиться поддерживать ток в цепи постоянным, то есть препятствует изменению тока в цепи.

Индуктивность бесконечной величины является идеальным генератором тока, то есть будет бесконечно гнать заданный ток I независимо от сопротивления нагрузки.

Читайте также:
Что относится к слесарному инструменту

Как хорошо сказано в wiki – “При сопоставлении силы электрического тока со скоростью в механике и электрической индуктивности с массой в механике ЭДС самоиндукции сходна с силой инерции.”

Это похоже как если вы подойдете к стоящей на рельсах вагонетке и станете ее толкать (приложите к ней силу). Вагонетка начнет медленно разгоняться и «ток все быстрее и быстрее побежит по проводам». А потом попробуйте вагонетку тормозить и она будет медленно останавливаться.

Так и в индуктивности, после подачи напряжения ток будет постепенно расти (вагонетка разгоняется), а при подаче напряжения другой полярности — постепенно уменьшаться (вагонетка тормозится).

Отсюда следует вывод «Поезд мгновенно остановить нельзя!»

«Ток в индуктивности мгновенно остановить нельзя!»

То есть даже если щелкнуть выключателем S4 на схеме и разомкнуть цепь, ток в первый момент после этого будет продолжать идти! На практике это приводит к тому, что в момент размыкания контактов в выключателе между ними будет проскакивать искра.

Сопротивление при размыкании контактов увеличивается до бесконечности (в реальности до очень больших величин) и протекающий ток создаст на этом сопротивлении напряжение очень большой величины, так что воздушный промежуток между контактами будет пробит.

В водопроводной аналогии этому явлению можно сопоставить гидравлический удар, когда масса воды в водопроводе набирает скорость, и при резком закрытии крана вода, продолжая двигаться по инерции, создает высокое давление, что может привести к разрыву трубы.

Причины по которой индуктивность имеет такие свойства (поддержание тока в цепи) хорошо описаны в wiki – https://ru.wikipedia.org/wiki/Самоиндукция

“При изменении тока в контуре пропорционально меняется и магнитный поток через поверхность, ограниченную этим контуром. Изменение этого магнитного потока, в силу закона электромагнитной индукции, приводит к возбуждению в этом контуре индуктивной ЭДС. Это явление называется самоиндукцией. Направление ЭДС самоиндукции всегда оказывается таким, что при возрастании тока в цепи ЭДС самоиндукции препятствует этому возрастанию (направлена против тока), а при убывании тока — убыванию (сонаправлена с током). Явление самоиндукции проявляется в замедлении процессов исчезновения и установления тока.

По отношению к конденсатору , основным отличием индуктивности, если говорить простыми словами, является то, что конденсатор пропускает переменный ток и не пропускает постоянный, а индуктивность наоборот — пропускает постоянный ток и не пропускает переменный.

Тут есть некий момент — постоянный ток это ток, который не меняется со временем, то, что называется «постоянная составляющая» частотой равной 0 Гц. Ее конденсатор не пропускает. Совсем.

А вот индуктивность совсем не пропускает переменный ток бесконечной частоты. А просто переменный ток любой конечной частоты немножко пропускает.

Но к понятию напряжения переменного тока мы вернемся позже.

Рассмотрим цепь на рис. 13 – подключение катушки индуктивности к генератору напряжения.
Ниже представлен график тока в индуктивности при подаче на нее постоянного напряжения от генератора напряжения.

рис. 14 График тока в индуктивности при подаче на нее постоянного напряжения.

При подаче на индуктивность постоянного напряжения ток в ней линейно возрастает со временем.

Мы помним аналогичную картину для конденсатора.

Напряжение на конденсаторе линейно возрастает при его заряде постоянным током.

А что будет, если запитать индуктивность от генератора тока?

рис 15. Подключение индуктивности к генератору тока.

Ну тут из серии «кто кого заборет — слон или кит».

Попробуйте проанализировать работу схемы (hint – вообще схема изображена с ошибкой. В чем она заключается? Как нарисовать схему правильно?)

Цепи, содержащие конденсатор и индуктивность

Как было отмечено выше, индуктивность в электротехнике играет ту же роль, что масса в механике. А что является аналогом конденсатора в механике? Конденсатор является генератором напряжения, то есть создает силу, которая двигает поток заряда по проводам. Выше мы приводили аналог конденсатора в виде водонапорной башни, которая заполняется водой (зарядом) и давление (напряжение) в ней увеличивается.

Но можно также представить конденсатор в виде пружины — при заряде пружина сжимается и сила сжатия (напряжение) увеличивается. Емкость в этом случае величина обратная жесткости пружины. Чем пружина жестче, тем быстрее возрастает сила при сжатии. То есть соединение конденсатора и индуктивности эквивалентно вагонетке закрепленной на пружине. )

Что же будет происходить, если конденсатор соединить с индуктивностью, например как в схеме на рис. 16

рис 16. Параллельное включение конденсатора и катушки индуктивности.

Пусть конденсатор С заряжен до напряжения U. Ключ S2 замыкается и в цепи начинает течь ток. Это эквивалентно тому, как если бы мы сжали пружину и затем в какой-то момент отпустили (замкнули ключ S2).

В первый момент после замыкания ключа ток в цепи будет равен 0, так как индуктивность препятствует изменению тока. К вагонетке приложили силу, но в первый момент времени ее скорость равна 0. Затем ток начинает возрастать (вагонетка разгоняется). Пружина разжимается все больше и больше, скорость вагонетки (ток) растет и в какой-то момент времени пружина оказывается не сжата. Конденсатор разрядился до 0. Но. Мы помним что «ток в индуктивности мгновенно остановить нельзя!» Вагонетка разогналась и даже если мы не будем ее толкать, она будет двигаться по инерции. То есть индуктивность будет поддерживать ток и при этом заряжать конденсатор, но уже в другой полярности – заряды теперь будут скапливаться на другой обкладке конденсатора. Растущее напряжение противоположного знака на конденсаторе будет препятствовать движению зарядов, и в конце концов ток в цепи станет равным нулю. Но при этом конденсатор уже зарядился напряжением U другой полярности!

Читайте также:
Что делать: пол по лагам или стяжку в квартире на первом этаже? (ВОПРОС)

То есть цепь пришла в состояние когда конденсатор заряжен, ток в ней равен нулю.
Хм.. но это то же состояние, с которого мы начали, только полярность напряжения противоположная. Следовательно процесс повторится, только ток потечет уже в другую сторону и система вернется в исходное состояние. Вагонетка поедет обратно, проедет положение равновесия и по инерции снова сожмет пружину.

Возникнет колебательный процесс. То есть вагонетка на пружине так и будет кататься туда-сюда и в отсутствие потерь энергии (трения) этот процесс будет длиться бесконечно.

Таким образом соединение конденсатора с индуктивностью образует колебательное звено. Такие звенья широко используются в электротехнике для создания генераторов и фильтров напряжения переменного тока.

Понятие переменного тока рассмотрим в следующей статье.

UPD.
Поскольку возник диспут экспоненциально ли растет ток при подключении катушки индуктивности к генератору напряжения или линейно, скажу еще пару слов по этому вопросу.

Откуда же берется экспонента роста тока в схеме на рис.13?
Ответ- ниоткуда. Ее там нет. Ток растет линейно и зависимость тока от напряжения описывается формулой

ЭДС самоиндукции в цепи прямо пропорциональна скорости изменения силы тока в этой цепи.
Чтобы обеспечить U=const (а U – это производная от тока в катушке), ток должен линейно расти.

А откуда тогда вообще зашел разговор об экспоненте? А зашел он потому, что ток линейно растет только в идеальном случае — в схеме с идеальным генератором напряжения (бесконечной мощности и с нулевым внутренним сопротивлением) и идеальной индуктивностью (с нулевым внутренним сопротивлением).
В реальном случае с учетом внутреннего сопротивления схема будет выглядеть так.

рис 17. Подключение катушки индуктивности к генератору напряжения с учетом внутреннего сопротивления.

На схеме рис.17 R символизирует собой внутреннее сопротивление генератора и катушки индуктивности. (они все равно включены последовательно, поэтому можно обойтись одним R, как суммой этих сопротивлений)

В этом случае процесс разворачивается следующим образом. При замыкании ключа S4 цепь замкнется и должен был бы пойти ток. Однако, катушка индуктивности препятствует изменению тока, и в первый момент времени после замыкания ключа ток останется равным 0! По сути дела катушка в этот момент представляет собой разрыв цепи с бесконечным сопротивлением. Поэтому напряжение U будет приложено к катушке целиком. Можно и по другому подойти – Ur=I*R. Падение напряжения на резисторе равно I*R, I у нас равен 0, поэтому напряжение на резисторе тоже равно 0, и к катушке будет приложено полное напряжение U. Дальше ток в катушке будет расти. В области 0 линейно кстати (см рис 19 «Переход Суворова через Альпы» «Экспонента проходит через 0 под углом 45 градусов»). Ток будет расти и падение напряжения на резисторе тоже будет расти. А на катушке соответственно падать, потому что часть напряжения будет забирать на себя резистор. Поэтому со временем линейность роста тока в цепи будет нарушаться. Когда падение напряжения на резисторе I*R сравняется с напряжением генератора U рост тока прекратится совсем, потому что напряжение на катушке будет равно 0 (все напряжение будет падать на резисторе).

Вот в этом случае и получится такой экспоненциальный график роста тока в индуктивности.

Рис. 18 Экспоненциальный график роста тока в индуктивности. ис 19 «Экспонента проходит через 0 под углом 45 градусов»

зы. В интернете столько разнообразной ереси на тему катушек индуктивности. Просто диву даешься.
«Катушка индуктивности обладает также очень интересным свойством. При подаче на катушку постоянного напряжения, в катушке возникает на короткий промежуток времени противоположное напряжение. Это противоположное напряжение называется ЭДС самоиндукции. Эта ЭДС зависит от значения индуктивности катушки. Поэтому, в момент подачи напряжения на катушку сила тока в течение долей секунд плавно меняет свое значение от 0 до некоторого значения, потому что напряжение, в момент подачи электрического тока, также меняет свое значение от ноля и до установившегося значения.»
Ну.. поскольку про резистор в цепи ничего не сказано, то не на короткий промежуток, а пока входное напряжение не будет снято. Вторая часть звучит бредово, но направление верное — ток с цепи растет от нуля до.. без резистора до бесконечности, с резистором до I=Uвх/R.

Предположим, что обычная катушка индуктивности подключена к источнику напряжения через ключ. При замыкании ключа на индуктивность подается напряжение, вызывающее быстрое изменение протекающего через нее тока. Когда приложенное напряжение увеличивается от нуля до пикового значения (за короткое время), индуктивность противодействует изменяющемуся через нее току, индуцируя напряжение, противоположное по полярности приложенному напряжению. Индуцированное напряжение при подаче питания на катушку индуктивности называется обратной ЭДС и определяется по формуле 1:

VL = – L*(di/dt), (1)
где:
VL – напряжение (обратная ЭДС), индуцированная на катушке;
L – индуктивность катушки;
di/dt – скорость изменения тока во времени.

Видимо здесь попытались описать начальный момент возникновения ЭДС самоиндукции, но получилась ерунда. Говорить, что «индуцированное напряжение противоположно по полярности приложенному напряжению» это то же самое, что “падение напряжения на резисторе противоположно по полярности приложенному напряжению.” Ага, точно, приложенное напряжение сложили с падением напряжения и после резистора получили 0. Так и есть, лол.
«ЭДС самоиндукции» в катушке это аналог «падения напряжения» на резисторе. Только в резисторе электрическая энергия рассеивается, переходит в тепло, а в индуктивности — накапливается, переходит в энергию магнитного поля. В водопроводной аналогии индуктивность это такая турбинка, вставленная в водопроводную трубу, и которая имеет момент инерции. Турбинка пропускает воду только когда вращается. И вот крантель открыли, давление к турбинке приложили, она начала вращаться и пошел ток дальше по трубе. И чем быстрее турбинка вращается, тем больше ее пропускная способность. Турбинка раскручивается, ток возрастает и так до бесконечности. Это если нет потерь энергии — резистора. А если есть резистор (трение), то часть давления расходуется на преодоление трения. И когда вся входная энергия будет расходоваться на трение, турбинка перестанет ускоряться и ток достигнет максимальной величины.

Рис.20 Переходной процесс в цепи с индуктивностью

Картинка неправильная. В правильном варианте при отключении источника, подключался резистор и цепь оставалась замкнутой.

Рассмотрим следующую цепь

Рис.21 Цепь с индуктивностью и переключателем

Вопрос на засыпку: Чему будет равно напряжение на индуктивности в первый момент после переключения ключа S из верхнего положения в нижнее?

Hint: Не надо выносить себе мозг, пытаясь сообразить с каким там знаком возникнет ЭДС самоиндукции и что с ней будет дальше. Надо применять простое правило:
Ток в индуктивности в первый момент времени после переключения сохраняется неизменным.
Дальше применять закон Ома.

Катушка индуктивности. Устройство и принцип работы.

Приветствую всех на нашем сайте!

Мы продолжаем изучать электронику с самых основ, и темой сегодняшней статьи будет катушка индуктивности. Забегая вперед скажу, что сначала мы обсудим теоретические аспекты, а несколько будущих статей посвятим целиком и полностью рассмотрению различных электрических схем, в которых используются катушки индуктивности, а также элементы, которые мы изучили ранее в рамках нашего курса — резисторы и конденсаторы.

Устройство и принцип работы катушки индуктивности.

Как уже понятно из названия элемента — катушка индуктивности, в первую очередь, представляет из себя именно катушку То есть большое количество витков изолированного проводника. Причем наличие изоляции является важнейшим условием — витки катушки не должны замыкаться друг с другом. Чаще всего витки наматываются на цилиндрический или тороидальный каркас:

Важнейшей характеристикой катушки индуктивности является, естественно, индуктивность, иначе зачем бы ей дали такое название Индуктивность — это способность преобразовывать энергию электрического поля в энергию магнитного поля. Это свойство катушки связано с тем, что при протекании по проводнику тока вокруг него возникает магнитное поле:

А вот как выглядит магнитное поле, возникающее при прохождении тока через катушку:

В общем то, строго говоря, любой элемент в электрической цепи имеет индуктивность, даже обычный кусок провода. Но дело в том, что величина такой индуктивности является очень незначительной, в отличие от индуктивности катушек. Собственно, для того, чтобы охарактеризовать эту величину используется единица измерения Генри (Гн). 1 Генри — это на самом деле очень большая величина, поэтому чаще всего используются мкГн (микрогенри) и мГн (милигенри). Величину индуктивности катушки можно рассчитать по следующей формуле:

Давайте разберемся, что за величину входят в это выражение:

  • mu_0 — магнитная проницаемость вакуума. Это табличная величина (константа) и равна она следующему значению: mu_0 = 4 pi cdot 10^<-7>medspacefrac <Гн>
  • mu — магнитная проницаемость магнитного материала сердечника. А что это за сердечник и для чего он нужен? Сейчас выясним. Дело все в том, что если катушку намотать не просто на каркас (внутри которого воздух), а на магнитный сердечник, то индуктивность возрастет многократно. Посудите сами — магнитная проницаемость воздуха равна 1, а для никеля она может достигать величины 1100. Вот мы и получаем увеличение индуктивности более чем в 1000 раз
  • S — площадь поперечного сечения катушки
  • N — количество витков
  • l — длина катушки

Из формулы следует, что при увеличении числа витков или, к примеру, диаметра (а соответственно и площади поперечного сечения) катушки, индуктивность будет увеличиваться. А при увеличении длины — уменьшаться. Таким образом, витки на катушке стоит располагать как можно ближе друг к другу, поскольку это приведет к уменьшению длины катушки.

С устройством катушки индуктивности мы разобрались, пришло время рассмотреть физические процессы, которые протекают в этом элементе при прохождении электрического тока. Для этого мы рассмотрим две схемы — в одной будем пропускать через катушку постоянный ток, а в другой -переменный!

Катушка индуктивности в цепи постоянного тока.

Итак, в первую очередь, давайте разберемся, что же происходит в самой катушке при протекании тока. Если ток не изменяет своей величины, то катушка не оказывает на него никакого влияния. Значит ли это, что в случае постоянного тока использование катушек индуктивности и рассматривать не стоит? А вот и нет 🙂 Ведь постоянный ток можно включать/выключать, и как раз в моменты переключения и происходит все самое интересное. Давайте рассмотрим цепь:

Резистор выполняет в данном случае роль нагрузки, на его месте могла бы быть, к примеру, лампа. Помимо резистора и индуктивности в цепь включены источник постоянного тока и переключатель, с помощью которого мы будем замыкать и размыкать цепь. Что же произойдет в тот момент когда мы замкнем выключатель?

Ток через катушку начнет изменяться, поскольку в предыдущий момент времени он был равен 0. Изменение тока приведет к изменению магнитного потока внутри катушки, что, в свою очередь, вызовет возникновение ЭДС (электродвижущей силы) самоиндукции, которую можно выразить следующим образом:

Возникновение ЭДС приведет к появлению индукционного тока в катушке, который будет протекать в направлении, противоположном направлению тока источника питания. Таким образом, ЭДС самоиндукции будет препятствовать протеканию тока через катушку (индукционный ток будет компенсировать ток цепи из-за того, что их направления противоположны). А это значит, что в начальный момент времени (непосредственно после замыкания выключателя) ток через катушку I_L будет равен 0. В этот момент времени ЭДС самоиндукции максимальна. А что же произойдет дальше? Поскольку величина ЭДС прямо пропорциональна скорости изменения тока, то она будет постепенно ослабевать, а ток, соответственно, наоборот будет возрастать. Давайте посмотрим на графики, иллюстрирующие то, что мы обсудили:

На первом графике мы видим входное напряжение цепи — изначально цепь разомкнута, а при замыкании переключателя появляется постоянное значение. На втором графике мы видим изменение величины тока через катушку индуктивности. Непосредственно после замыкания ключа ток отсутствует из-за возникновения ЭДС самоиндукции, а затем начинает плавно возрастать.

Напряжение на катушке наоборот в начальный момент времени максимально, а затем уменьшается. График напряжения на нагрузке будет по форме (но не по величине) совпадать с графиком тока через катушку (поскольку при последовательном соединении ток, протекающий через разные элементы цепи одинаковый). Таким образом, если в качестве нагрузки мы будем использовать лампу, то они загорится не сразу после замыкания переключателя, а с небольшой задержкой (в соответствии с графиком тока).

Аналогичный переходный процесс в цепи будет наблюдаться и при размыкании ключа. В катушке индуктивности возникнет ЭДС самоиндукции, но индукционный ток в случае размыкания будет направлен в том же самом направлении, что и ток в цепи, а не в противоположном, поэтому запасенная энергия катушки индуктивности пойдет на поддержание тока в цепи:

После размыкания ключа возникает ЭДС самоиндукции, которая препятствует уменьшению тока через катушку, поэтому ток достигает нулевого значения не сразу, а по истечении некоторого времени. Напряжение же в катушке по форме идентично случаю замыкания переключателя, но противоположно по знаку. Это связано с тем, что изменение тока, а соответственно и ЭДС самоиндукции в первом и втором случаях противоположны по знаку (в первом случае ток возрастает, а во втором убывает).

Кстати, я упомянул, что величина ЭДС самоиндукции прямо пропорциональна скорости изменения силы тока, так вот, коэффициентом пропорциональности является ни что иное как индуктивность катушки:

На этом мы заканчиваем с катушками индуктивности в цепях постоянного тока и переходим к цепям переменного тока.

Катушка индуктивности в цепи переменного тока.

Рассмотрим цепь, в которой на катушку индуктивности подается переменный ток:

Давайте посмотрим на зависимости тока и ЭДС самоиндукции от времени, а затем уже разберемся, почему они выглядят именно так:

Как мы уже выяснили ЭДС самоиндукции у нас прямо пропорциональна и противоположна по знаку скорости изменения тока:

Собственно, график нам и демонстрирует эту зависимость! Смотрите сами — между точками 1 и 2 ток у нас изменяется, причем чем ближе к точке 2, тем изменения меньше, а в точке 2 в течении какого-то небольшого промежутка времени ток и вовсе не изменяет своего значения. Соответственно скорость изменения тока максимальна в точке 1 и плавно уменьшается при приближении к точке 2, а в точке 2 равна 0, что мы и видим на графике ЭДС самоиндукции. Причем на всем промежутке 1-2 ток возрастает, а значит скорость его изменения положительна, в связи с этим на ЭДС на всем этом промежутке напротив принимает отрицательные значения.

Аналогично между точками 2 и 3 — ток уменьшается — скорость изменения тока отрицательная и увеличивается — ЭДС самоиндукции увеличивается и положительна. Не буду расписывать остальные участки графика — там все процессы протекают по такому же принципу 🙂

Кроме того, на графике можно заметить очень важный момент — при увеличении тока (участки 1-2 и 3-4) ЭДС самоиндукции и ток имеют разные знаки (участок 1-2: varepsilon i > 0, участок 3-4: varepsilon > 0, i w — круговая частота: w = 2 pi f . [/latex]f[/latex] — это частота переменного тока. Таким образом, чем больше частота тока, тем большее сопротивление будет ему оказывать катушка индуктивности. А если ток постоянный ( f = 0), то реактивное сопротивление катушки равно 0, соответственно, она не оказывает влияния на протекающий ток.

Давайте вернемся к нашим графикам, которые мы построили для случая использования катушки индуктивности в цепи переменного тока. Мы определили ЭДС самоиндукции катушки, но каким же будет напряжение u ? Здесь все на самом деле просто! По 2-му закону Кирхгофа:

Построим на одном графике зависимости тока и напряжения в цепи от времени:

Как видите ток и напряжение сдвинуты по фазе (ссылка) друг относительно друга, и это является одним из важнейших свойств цепей переменного тока, в которых используется катушка индуктивности:

Вот и с включением катушки в цепь переменного тока мы разобрались!

На этом, пожалуй, закончим сегодняшнюю статью, она получилась уже довольно объемной, поэтому разговор о катушках индуктивности мы продолжим в следующий раз. Так что до скорых встреч, будем рады видеть вас на нашем сайте!

25 горячих штук с AliExpress для кухни, дома и ремонта

На AliExpress можно найти не только китайские гаджеты или смартфоны Xiaomi. Здесь есть очень много полезных идей, которые воплощаются в реальные штуки, упрощающие жизнь.

Сегодня собрали 25 самых оригинальных идей, среди которых каждый найдет парочку полезных для себя. Или может быть уже нашел?

По традиции, ещё три товара уже появились в нашем Telegram-канале .

Как покупать выгодно и автоматически получать кэшбек?

? Покупая с расширением LetyShops для браузеров: оно помогает выбирать честные магазины и ловить реальные скидки.

День за днем расширение собирает статистику для всех магазинов партнерской программы Letyshops в виде числа заказов, рейтингов… и фактической цены на каждый день с отображением динамики.

Чрезвычайно полезно, чтобы не покупать с двойной ценой на распродажах. Впрочем, ведь оно нужно ещё и для быстрого получения кэшбека:

Не забудьте перед покупками зарегистрироваться на сайте Letyshops.

1. Универсальная зарядная станция с подсветкой Tecvasion

Эта настольная зарядка включает в себя 3 отдельных элемента: светильник с зарядной базой, подставку под него и технику, а так же блок питания.

Благодаря такому набору устройство можно поставить на прикроватный столик и аккуратно разложить все гаджеты. И свет, и к утру все аккумуляторы на полную. Хватит даже “айпаду”.

Цена: 1 500 руб., купить с кэшбеком

2. USB-подогреватель USB Warmer

Разработчики этой маленькой прелести вдохновились керамической кружкой с подогревом от Xiaomi, и решили распространить лайфхак на все под рукой.

Подставка подключается к USB-порту любого устройства, будь то компьютер или ноутбук, и легонько подогревает все, что на ней стоит до 50-60 градусов.

Цена: 130 руб., купить с кэшбеком

3. Жидкая кожа Visbella

Очень интересный химический состав в бутылочке: после высыхания он превращается в гибкую, достаточно прочную пленку. По сути – краситель с растворителем, плюс пластификатор.

Она подрастворяет любые полимерные пленки поблизости, превращаясь с ними в одно целое. Так можно подлатать любое кожзамное покрытие.

Цена: 760 руб., купить с кэшбеком

4. Ланч-бокс WORTHBUY

Кажется, это самый удобный (и самый дорогой, увы) бокс для переноски завтрака. Хотя хватит и для обеда, который в ней же можно разогреть. К тому же коробка изотермическая, сохраняет температуру.

Закрывается очень плотно, его не страшно перевернуть: все останется на своих местах, и не протечет. А ещё есть специальный отсек для столовых приборов.

Цена: от 1 100 руб., купить с кэшбеком

5. Контурный измеритель ALLSOME

Хит сезона: набор тонких пластиковых стержней с фиксатором, ещё один повод восхищаться китайской смекалкой.

Благодаря этой штуке можно скопировать форму труднодоступных препятствий и перенести в другое место. Например, сделать вырезы под трубы. Гениально!

Цена: 800 руб., купить с кэшбеком

6. Термостойкие перчатки BBQ Gloves

Ничего особенного, просто перчатки вместо прихваток. Идеальный кухонный аксессуар, который спасает от температур до 250 градусов по Цельсию.

В открытый огонь лезть не стоит, опасно – при больших температурах их вряд ли тестировали, кроме того, возможны химические реакции.

Цена: 230 руб., купить с кэшбеком

7. Пробка-стакан

Что нужно настоящему любителю вина? Стакан размером с бутылку! Как этот, что ввинчивается вместо пробки и предлагает устраивать возлияния из горлышка.

Но уже совсем культурно и красиво, так сказать, цивилизованно.

Цена: 600 руб., купить с кэшбеком

8. Жидкая защитная пленка Lamorniea

Интересное решение, которое точно понравится владельцам хитрых гаджетов с нестандартными экранами. ВНИМАНИЕ! Может не подойти при наличии олеофобного покрытия.

Жидкость наносится на экран, самостоятельно растекается. После облучения УФ-фонариком превращается в твердую пленку, которой хватает на полгода.

Цена: 110 руб., купить с кэшбеком

9. Шнурки для ленивых XD149

На этот раз лентяям не предлагают магнитные самосхватывающиеся скобы или растягивающиеся пластиковые ленты. Все намного проще.

В верхнее отверстие ставится “булавка”, на который набрасывается кончики шнурков. Затянул, накинул, побежал.

Цена: 250 руб., купить с кэшбеком

10. Диспенсер для воды Pump Dispenser

Компактный “наливатор” для больших пластиковых бутылок со встроенной батарейкой и USB-подзарядкой. Что? Зачем?

Внутри расположен электрический насос, который позволяет наливать воду из бутылки, не переворачивая её вверх дном. Иногда так безопасней.

Цена: 590 руб., купить с кэшбеком

11. Универсальный накидной ключ Hi-Spec

Собственно, обычный накидной (торцевой) гаечный ключ, у которого набор головок заменяет один универсальный цанговый (условно) держатель с подстройкой на винтах.

Крепкость хвата не идеальная, для разбора старых соединений не подойдет. Но на легкой работе один ключ вместо десятка – просто песня!

Цена: 1 450 руб., купить с кэшбеком

12. Браслет-фляга Flagons

Про обед мы уже говорили. А эта штука позволит постоянно носить с собой “на стиле” почти поллитра любимого напитка.

Если горлышко не заметят, то можно пронести в клуб, например.

Цена: от 450 руб., купить с кэшбеком

13. Кабель с загнутым microUSB от Xiaomi

Самый оригинальный USB-кабель из существующих: разъем под смартфон находится в полужестком пластиковом чехле, формой напоминающем букву “П”.

Оригинальный аксессуар разработан для тех, кто играет или иным способом активно пользуется заряжающимся смартфоном: провод на “спине” этому никак не мешает.

Цена: 800 руб., купить с кэшбеком

14. Пенал Pencilcase

Хотя это обычный пенал для карандашей, стоит присмотреться внимательнее. Подойдет и для гаджетов благодаря куче кармашков.

Съемные кармашки позволяют комбинировать количество карманчиков и удобно организовывать пространство внутри.

Цена: 850 руб., купить с кэшбеком

15. Отпариватель Garment Streamer

Одна из самых полезных штук в домашнем хозяйстве. Идеально для рубашек, особенно льняных: во время работы устройства складки на ткани расправляются под собственным весом.

Кроме того, высокая температура в сочетании с водой убивает запахи, очищает и освежает. Иногда заменяет стирку.

Цена: от 1 100 руб., купить с кэшбеком

16. Устройство для записи RFID-меток

Универсальный набор китайского мастера с рынка позволяет создавать собственные RFID-пропуска и даже прошивать ключи. Или клонировать имеющиеся, если чип внутри подходит.

В комплекте уже есть несколько ключей и карт, дело за малым. Устройство законно, если не использовать его в незаконных целях.

Цена: от 500 руб., купить с кэшбеком

17. Перочинный нож Xiaomi

Крошечный ножик от партнера Xiaomi можно считать эталоном наключника. Маленький, компактный, прочный. И вмещает в себя все основные инструменты традиционного швейцарского компакта.

Чуть не забыл: качество Xiaomi, европейская сталь, отличная заточка. На века!

Цена: 300 руб., купить с кэшбеком

18. Семена орхидеи Phalenopsis

Вырастить орхидею из семечка занятие чрезвычайно сложное. Но если получится, цветок обрадует не один раз: они прекрасно цветут и довольно нетребовательны к уходу.

Цена: от 20 руб., купить с кэшбеком

19. Ультракомпактный зонт TQ

Этот зонт полностью умещается в ладони, одновременно с тем в раскрытом состоянии защищая взрослого человека.

Если вопрос места критичен (на всякий случай в рюкзак), лучше не найти. За эту цену чаще чехольчики продаются, а он уже в комплекте.

Цена: от 450 руб., купить с кэшбеком

20. Автоматический диспенсер для мыла Xiaomi

На самом деле, мыло в жидком виде малоэффективно. И расход увеличивается. Именно поэтому мастера-парикмахеры рекомендуют вспенивать любые моющие составы перед нанесением.

Диспенсер Xiaomi самостоятельно превращает жидкое мыло в пену, здорово снижая её расход. Кстати, работает автоматически, реагируя на движение: поднес руку, получил порцию пены.

Цена: 1 150 руб., купить с кэшбеком

21. Полностью беспроводные наушники I7s TWS

Это не AirPods, но среди их китайских клонов – наиболее стабильная по качеству модель. Выпускается миллионами, шанс найти адекватный экземпляр очень высок.

Почему так дешево? Все сенсорные элементы заменены на обычные кнопки, передатчик держит связь не дальше 5 метров, да и звучание на уровне каких-нибудь Piston младшего уровня.

Цена: 350 руб., купить с кэшбеком

22. Пакет для жидкостей

Официальное название аксессуара звучит как “Мягкая ёмкость для секретного проноса жидкости”. Напоминает пакет для капельницы, но с завинчивающейся крышкой.

Впрочем, можно просто хранить в ней… компот в холодильнике, поскольку так он будет занимать намного меньше места.

Цена: от 490 руб., купить с кэшбеком

23. Сумка-холодильник CBJ

Одна из самых дешевых изотермических сумок, которые попадаются на AliExpress. Несмотря на цену, годный вариант с жесткими стенками, который адекватно держит температуру внутри.

Полностью герметичное дно даже воду носить позволяет. Пора покупать, лето не за горами.

Цена: 890 руб., купить с кэшбеком

24. Диспенсер для бутылки Fizz Saver

Очередной податчик жидкости. Эта модель разработана специально для горлышка пластиковой бутылки: нажал рычаг, налил стаканчик “колы”.

Цена: 230 руб., купить с кэшбеком

25. Умные кварцевые часы Xiaomi

Модный вариант фитнес-аксессуара Xiaomi. Если угодно, Mi Band в обличье эффектных Casio (по слухам от часовых сообществ, именно такой механизм используется).

Часы не боятся воды, достойно держат удары и показывают время без большой погрешности. Умеют считать шаги, расстояние и вибрировать от полученных сообщений/звонков.

Цена: 3 300 руб., купить с кэшбеком

Возвращаем деньги за покупки с LetyShops:

1. Ставим бесплатное расширение LetyShops для браузера.

2. Регистрируемся на сайте Letyshops и вводим в расширение данные учетной записи.

3. Покупаем и получаем кэшбек за каждую покупку.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: