Электронные усилители

Тема 2.4. Электронные усилители

Структура электронного усилителя

Электронным усилителем называется устройство, преобразующее маломощный входной электрический сигнал в сигнал гораздо большей мощности с минимальными искажениями его формы . Усиление мощности сигнала может осуществляться за счет усиления тока или напряжения.

Эффект усиления возможен только при наличии дополнительного источника энергии, называемого источником питания . Следовательно, усилитель представляет собой устройство , которое под воздействием входного сигнала преобразует энергию источника питания в энергию выходного (полезного) сигнала .

Схема включения электронного усилителя

Источником входного сигнала усилителя может быть любой преобразователь электрической или неэлектрической величины в электрическую: микрофон, фотоэлемент, пьезоэлемент, считывающая магнитная головка, предшествующий усилитель, термоэлектрический датчик, химический источник тока и т. д. В зависимости от типа источника, диапазон мощностей сигналов, поступающих на вход усилителя, достаточно широк. Например, напряжение, поступающее на вход усилителя от передающей телевизионной трубки, составляет всего 2 … 5 мВ при малой мощности. От микрофона на вход усилителя может поступать напряжение, не превышающее десятых – сотых долей милливольта. Однако такие источники, как предшествующий усилитель, могут создавать напряжение, достигающее десятков – сотен вольт при мощности сигнала в единицы ватт.

Выходной электрический сигнал усилителя поступает на устройство, называемое нагрузкой . В качестве нагрузки электронного усилителя могут использоваться различные преобразователи электрической энергии в электрическую или неэлектрическую: телефон, громкоговоритель, гальванометр, реле, последующий усилитель, электродвигатель, осветительные или нагревательные приборы и т. д. Значения потребляемой мощности для различных видов нагрузки лежат в широких пределах. Например, мощность, потребляемая телефоном, составляет сотые доли ватт. В то же время мощность, потребляемая городской сетью проводного вещания, достигает сотен киловатт.

Электронный усилитель может быть однокаскадным, двухкаскадным или многокаскадным. В общем случае усилитель состоит из нескольких каскадов, к первому из которых подключают источник сигнала, а к выходу последнего – нагрузку. Необходимость в использовании нескольких каскадов обусловлена, в первую очередь, тем, что сигнал, передаваемый от источника к нагрузке предварительно необходимо усилить в тысячи – десятки тысяч и более раз. При использовании в усилителе в качестве активного элемента, например, биполярного транзистора с коэффициентом передачи тока базы 50 … 100, задача может быть решена только в том случае, если последовательно включить несколько каскадов усиления. Кроме этого часто возникает необходимость согласовывать выходное сопротивление источника сигнала со входным сопротивлением усилителя, либо выходное сопротивление усилителя с сопротивлением нагрузки.

Обобщенная структурная схема электронного усилителя приведена на рисунке 2.2.

В состав усилителя входят следующие элементы:

оконечный усилительный каскад (ОК), предназначенный для усиления мощности сигнала и выделения ее в нагрузке (Н);

предоконечный каскад (ПОК),предназначенный для управления транзисторами оконечного каскада. При большой величине мощности оконечного каскада ПОК должен обеспечивать мощность, достаточную для получения требуемой неискаженной выходной мощности усилителя. Если оконечный каскад является двухтактным, то предоконечный каскад выполняет одновременно инверсию фазы напряжения сигнала;

каскады предварительного усиления (ПрК) (их количество определяется с учетом обеспечения требуемого коэффициента усиления напряжения), служащие для увеличения уровня сигналов, получаемых от источника (ИС), до величины, необходимой для управления транзисторами предоконечного каскада;

выходное устройство (ВыхУ), служащее для согласования сопротивления нагрузки с выходным сопротивлением оконечного каскада, симметрирования выходной цепи, а также для изоляции цепи нагрузки от постоянных напряжений и токов, действующих в цепях усилителя;

входное устройство (ВхУ), служащее для согласования внутреннего сопротивления источника сигналов с входным сопротивлением первого каскада усилителя, симметрирования входной цепи усилителя, а также для изоляции цепи источника сигналов от постоянных напряжений и токов, действующих во входных цепях усилителя;

– цепь общей отрицательной обратной связи (ООС), служащей для снижения искажений и шумов, стабилизации усиления, а также для стабилизации исходных режимов транзисторов (для указанных целей могут быть использованы разделенные цепи ООС по переменному и постоянному току). Цепи ООС могут охватывать или не охватывать выходное устройство, а также охватывать все или частъ каскадов предварительного усиления;

устройство безынерционной защиты (УБЗ) – для защиты транзисторов оконечного каскада усилителя от перегрузки;

источник питания и фильтры (ФП)в цепях питания каскадов предварительного усиления.

Электронные усилители

1 Определение, класс и параметры электронных усилителей

Электронный усилитель – устройство, которое служит для усиления напряжения, тока электрических сигналов и мощности сигналов, происходящее за счет мощности источника питания.

Электронные усилители классифицируются:

Читайте также:
Спальные гарнитуры фабрики «Пинскдрев»

– по роду усиливающего сигнала:

– по роду используемых усилительных элементов:

на операционных усилителях и др.

– по количеству используемых усилительных каскадов:

– по диапазону усиливаемых сигналов

УНЧ – усилители низкой частоты (20-100 кГц);

УПТ – усилители постоянного тока (меньше 1 Гц);

Избирательные усилители – усиливают сигналы в узкой полосе частот.

Широкополосные – усиливают сигналы от 10 Гц до 100 МГц.

2. Характеристики усилителя

Коэффициент усиления, амплитудно-частотная и фазочастотная характеристики.

1) К – коэффициент усиления отношения выходной величины к входной. Различают коэффициенты усиления по напряжению: ,

коэффициенты усиления по току: ,

коэффициенты усиления по мощности: ,

Может использовать единицы измерения

Если усилитель состоит из нескольких каскадов, соединенных последовательно, то общий коэффициент усиления будет: .

2) АЧХ – зависимость коэффициента усиления (K) от частоты усиливающего сигнала.

или , где

Типичный вид АЧХ усилителей:

По АЧХ можно определить полосу пропускания усилителя. Полоса пропускания – диапазон частот, в пределах которого сигнал усиливается без искажения его частот.

Искажение сигнала вне полосы пропускания связано с наличием в схеме усилителя в емкости.

3) ФЧХ – зависимость сдвига фаз между входным и выходным сигналом от частот.

4) Амплитудная динамическая характеристика – зависимость выходного напряжения от входного.

С ростом входного напряжения пропорционально растет и выходное. При достижении некоторого значения входного напряжения, пропорциональность нарушается, рост выходного напряжения замедляется, а затем выходное практически не усиливается. Нелинейность участка характеристики связана с тем, что характеристики усилительных элементов выходят за линейный участок. По амплитудной характеристике можно определить диапазон допускаемого напряжения, т. е. диапазон, в пределах которого усиление происходит с заданным сопротивлением.

3 Усилительный каскад на биполярном транзисторе с общим эмиттером

Усилительный каскад – усилительный элемент с нагрузочным сопротивлением и с элементами, обеспечивающими требуемое напряжение питания и связь данного каскада с другими.

Усилитель может состоять из одного или нескольких каскадов. Рассмотрим схему усилительного каскада.

3.1. Схема усилительного каскада

– биполярный транзистор p-n-p-типа, являющийся усилительным элементом.

– источник питания. Знак зависит от типа транзистора.

– делитель напряжения. Обеспечивает подачу напряжения на эмиттерный и коллекторный переходы транзистора для установки режима транзистора.

– резистор коллекторный.

– нагрузочный резистор.

– может сниматься как с нагрузочного, так и с и с усилительного элемента.

и – разделительные конденсаторы. Они задерживают постоянную составляющую сигнала на входном и выходном сигналах.

и – сопротивление и емкость эмиттерной стабилизации. Образуют отрицательную обратную связь.

– сопротивление по постоянному току.

– емкость по переменному току.

За счет этой отрицательной связи компенсируются изменения характеристик транзистора при изменении температуры.

3.2. Режим усиления сигнала

Для анализа используем входную и выходную характеристики транзистора. Рассмотрим режим усиления синусоидального сигнала. Такой режим еще называется динамическим или режимом по переменному току.

Выберем точку 0 на линейном участке входной характеристики. Подадим на вход транзистора , чтобы это напряжение не выходило за линейный участок выходной характеристики, Тогда ток базы будет синусоидальным с амплитудой .

Изобразим на семействе выходных характеристик и . Построим линию нагрузки исходя из:

Если точки А и В расположены на линейных участках выходных характеристик, то выходной сигнал не искажается (усиливается()) и инвертируется, т. е. меняет свой знак.

3.3. Выбор рабочей точки усилительного каскада

Из приведенных графических построений видно, что режим усиления переменного сигнала без существенного искажения его формы зависит от правильного выбора точки 0, которая называется рабочей точкой, точкой покоя. Перед тем, как отдать на вход каскада переменный усиливаемый сигнал требуется обеспечить начальный режим работы (статический режим, режим покоя, режим по постоянному току).

Режим покоя характеризуется постоянным током на выводах транзистора и постоянными напряжениями между ними. Обеспечивается этот режим в схеме с общим эмиттером положением точки покоя. Для стабильной работы усилителя стремятся не изменять положение этой точки в процессе работы усилителя. Для этого первоначально подается напряжение – напряжение смещения. Оно подается от источника через делитель напряжения и сохраняется постоянно. Переменное усиливаемое напряжение подается на участок базы эмиттера и создает пульсации тока базы . В режиме покоя напряжение покоя отсутствует и режим характеризуется постоянными значениями.

Таким образом полезный входной сигнал вызывает изменение , а следовательно и , .

Изменения тока коллектора значительно больше тока базы и на большом сопротивлении вызывает значительно увеличение амплитуды выходного напряжения.

Читайте также:
Флизелиновые обои под покраску: фото в интерьере

4. Усилительный каскад на биполярном транзисторе с общим коллектором

Выход усилительного каскада, т. е. коллектор, подключен к источнику, а значит по переменной составляющей он соединен с входом, т. к. заземлен (поскольку внутреннее сопротивление источника по переменному сигналу близко к 0).

Нагрузочный резистор, с которого снимается выходное напряжение, включен в эмиттерную цепь. Назначение остальных элементов схемы такое же как в усилительном каскаде с общим эмиттером. Особенностью этой схемы является то, что входной сигнал не усиливается по напряжению. Происходит усиление сигнала току и по мощности. Т. к. по напряжению усиление не происходит, то данный каскад называется эмиттерным повторителем. В отличие от схемы с общим эмиттером этот каскад имеет большое входное и малое выходное сопротивление. Поэтому усилительный каскад с общим коллектором используется для согласования источников сигнала с нагрузкой и усилительных каскадов между собой.

5. Температурная (эмиттерная) стабилизация в усилительных каскадах с общим эмиттером

Основным недостатком биполярного транзистора является зависимость их характеристик от температуры. Эта зависимость в основном отражается на выходных характеристиках, т. к. они соответствуют обратной ветви ВАХ коллекторного перехода.

При увеличении температуры выходные характеристики смещаются вверх. Это может привести к выходу точек А и В с линейных участков характеристик. В результате форма линейных участков может отличаться от синусоидальной. Для уменьшения влияния температуры в схеме предусматривается эмиттерная стабилизация на элементах и . Предположим что температура растет:

Растет ,

Т. к. , то растет ,

Т. к. или , следовательно, уменьшается.

Таким образом, напряжение, подаваемое на вход транзистора, уменьшается, что приводит к уменьшению тока эмиттера, а следовательно и . Таким образом, увеличение , вызванное повышением температуры компенсируется за счет обратной связи.

Известно, что отрицательная обратная связь приводит к уменьшению коэффициента передачи, т. е. коэффициент усиления. Чтобы снизить уменьшение коэффициента усиления за счет обратной связи по переменному току параллельно сопротивлению включается . Емкостное сопротивление которого .

Усилитель

Электронный усилитель — это усилитель, задача которого состоит в том, чтобы увеличить сигнал по мощности, при этом сохраняя форму усиливаемого сигнала. Более подробно это определение можно прочесть в Википедии. В этой статье мы поверхностно пробежимся по основам теории усилителей.

Что такое усилитель?

В электрических схемах очень часто встречаются сигналы малой мощности. Например, это может быть звуковой сигнал с динамического микрофона

слабый радиосигнал, который ловит из эфира ваш китайский радиоприемник

Либо отраженный сигнал от ракеты противника, который уже потом ловит, усиливает и отслеживает радиолокационная установка. Для примера: зенитно-ракетный комплекс ТОР:

Как вы видите, в электронике абсолютно везде требуется усиление слабых сигналов. Для того, чтобы их усиливать, как раз нужны усилители сигналов. Усилители широко применяются в радиолокации, телевидении, радиовещании, телеметрии, в вычислительной технике, авторегулировании, в системах автоматики и тд.

Что такое черный ящик в электронике

В общем виде усилитель можно рассматривать как черный ящик. Что представляет из себя этот черный ящик? Это ящик. Он черный). А так как он черный, то абсолютно никто не знает, что находится в нем. Остается только предполагать. Но возможен и такой вариант, что мы можем предпринять какие-либо действия и ждать ответной реакции. После ответной реакции этого черного бокса, можно предположить, что находится у него внутри.

То есть по сути черный ящик должен иметь какие-либо «сенсоры» для восприятия информации извне, некий «вход», а также некий «выход» для ответной реакции. То есть подавая на вход какое-либо воздействие, мы ждем ответной реакции черного ящика на выходе.

Пусть в черном ящике будет кот или кошка, но пока никто не знает, что он(а) там есть. Что мы сделаем в первую очередь? Потрясем ящик или пнем по нему, так ведь? Если там кто-то мяукнет, значит однозначно или кошка, или кот). То есть последовала ответная реакция. Как определить дальше кошка или кот? Открываем ящик, и из него вылазит лохматое чудо. Если побежала — значит кошка. Если побежал — значит кот).

Но также в черном ящике может быть абсолютно любое тело или вещество. Для таких ситуаций мы должны провести как можно больше опытов, то есть произвести как можно больше входных воздействий для более точного определения содержимого черного ящика.

Читайте также:
Современные чугунные радиаторы отопления, красивые ретро, фото

Что такое четырехполюсник

В электронике черным ящиком является четырехполюсник. Что вообще такое четырехполюсник? Четырехполюсник — это черный ящик, внутри которого имеется неизвестная электрическая цепь. Здесь мы видим две клеммы на вход, через которые подается входное воздействие и две клеммы на выход, с которых мы уже будем снимать отклик нашего «электрического черного ящика».

Пассивный четырехполюсник

Например, RC-цепь является пассивным четырехполюсником, так как она имеет четыре вывода: два на вход и два на выход, и как мы видим, она не содержит в себе какой-либо источник питания. Эта RC цепочка является пассивным фильтром низкой частоты (ФНЧ).

В пассивных четырехполюсниках напряжение или ток на выходе могут быть больше, чем на входе, но мощность при этом не увеличивается. Как же напряжение или ток на выходе могут быть больше, чем на входе? Здесь достаточно вспомнить трансформатор, а также последовательный и параллельный колебательные контура. Для них точнее было бы определение преобразователи напряжения, но никак не усилитель, так как усилитель должен иметь в своем составе обязательно источник питания, у которого он будет брать энергию для усиления слабого входного сигнала.

Также в пассивном четырехполюснике мощность на выходе никак не будет больше мощности, чем на входе. Если вы этого добьетесь, то сразу же получите вечный источник энергии и Нобелевскую премию в придачу. Но помните, что закон сохранения энергии, который впервые был еще сформулирован Лейбницем в 17 веке, никто не отменял.

Активный четырехполюсник

А вот этот четырехполюсник мы будем уже называть активным, так как он имеет в своем составе источник питания +Uпит , которое требуется для того, чтобы усиливать сигнал.

То есть мы здесь видим две клеммы на вход, на которые загоняется сигнал Uвх , а также видим две клеммы на выход, где снимается напряжение Uвых . Питается наш четырехполюсник через +Uпит , в результате чего, в данном случае, сигнал на выходе будет больше, чем сигнал на входе.

Загоняя на вход такой схемы синусоиду, на выходе мы получим ту же самую синусоиду, но ее амплитуда будет в разы больше.

Это, конечно же, верно для идеального усилителя, т.е. абсолютно линейного и без ограничения на амплитуду входного и выходного сигнала. В реальных усилителях, требуется чтобы амплитуда не превышала допустимую и усилитель был правильно спроектирован. Кроме того, любой реальный усилитель вносит искажения и характеризуется коэффициентом нелинейных искажений (КНИ) и еще многими другими параметрами, которые мы рассмотрим в следующей статье.

В активном четырехполюснике, одним из которых является усилитель мощности, мощность на выходе будет больше, чем на входе. Естественно, при этом не нарушается закон сохранения энергии, так как мощность, которая выделяется на нагрузке — это преобразованная мощность источника питания. Входной слабый сигнал просто управляет этой мощностью. Более подробно можно прочитать в статье про принцип усиления транзистора.

В электронике мы будем рассматривать усилитель, как активный четырехполюсник, на вход которого подается маломощный сигнал Uвх, а к выходу цепляется нагрузка Rн .

Обобщенная схема усилителя

Она выглядит примерно вот так:

Как мы можем видеть на схеме, ко входу усилительного каскада через клеммы 1 и 2 подсоединяется какой-либо источник слабого сигнала с ЭДС EИ и внутренним сопротивлением RИ . Именно этот слабый сигнал с этого источника мы будем усиливать. Далее, как и полагается, каждый усилитель обладает своим каким-либо входным сопротивлением Rвх . Сила тока Iвх в цепи EИ —>RИ—>Rвх , как ни трудно догадаться, будет зависеть от входного сопротивления усилительного каскада Rвх .

Как вы уже знаете, источник питания играет главную роль в усилительном каскаде. Маломощный слабый сигнал управляет расходом энергии источника питания. В результате на выходе мы получаем умощненную копию входного слабого сигнала. Усиление произошло благодаря тому, что источник питания давал свою мощность для усиления входного сигнала. Ну как-то вот так).

В выходной цепи усилителя мы получаем усиленный сигнал с ЭДС (Что такое ЭДС) Eвых и выходным сопротивлением Rвых . Через клеммники 3 и 4 мы цепляем нагрузку Rн , которая уже будет потреблять энергию усиленного сигнала. Сила тока в цепи Eвых —> Rвых —> Rн будет зависеть от сопротивления нагрузки Rн .

Типы усилителей

Усилители можно разделить на три группы:

Читайте также:
Стиль Шале — это что такое: определение и виды стиля шале – это что такое: определение и виды термина

Усилитель напряжения

Усилитель напряжения (УН) усиливает входное напряжение в заданное число раз. Этот коэффициент называется коэффициентом усиления по напряжению и вычисляется по формуле:

KU — это коэффициент усиления по напряжению

Uвых — напряжение на выходе усилителя, В

Uвх — напряжение на входе усилителя, В

Выходное усиленное напряжение не должно меняться от тока нагрузки, а следовательно, и от сопротивления нагрузки. В идеале, выходное сопротивление Rвых должно быть равно нулю, что недостижимо на практике. Поэтому, УН стараются проектировать так, чтобы минимизировать выходное сопротивление Rвых .

В таком режиме усилитель работает, если выполняются условия, что Rвх намного больше, чем Rвых т. е. Rвх >>Rи и Rн намного больше, чем Rвых (Rн >>Rвых ). Чем больше номинал Rн , тем лучше для усилителя напряжения, так как нагрузка не будет просаживать выходное напряжение Uвых. Здесь все просто: чем меньше сопротивление нагрузки, тем бОльшая сила тока будет течь по цепи Eвых —> Rвых —> Rн , тем больше будет падение напряжения на выходном сопротивлении Rвых , исходя из формулы ЭДС: Eвых =IвыхRвых +IвыхRн . Об этом можно более подробно прочитать в статье Закон Ома для полной цепи.

Усилитель тока

Усилитель тока (УТ) усиливает входной ток в заданное число раз. Этот коэффициент называется коэффициентом усиления по току и вычисляется по формуле:

где KI — коэффициент усиления по току

Iвых — сила тока в цепи нагрузки, А

Смысл работы усилителя тока такой: при определенной силе тока во входной цепи, на выходе в цепи нагрузки мы получаем силу тока, бОльшую в KI раз, независимо от того, какое значение принимает номинал нагрузки. Здесь уже работает простой закон Ома I=U/R.

Если сила тока должна быть постоянной, а значение сопротивления у нас может быть плавающим, то для поддержания постоянной силы тока в цепи нагрузки у нас усилитель автоматически изменяет напряжение Uвых на нагрузке. В результате, ток как был постоянной величиной, так и остался. Или буквами: Rн =var, Iвых= const.

Объяснение выше вы будете рассказывать своему преподу по электронике, а теперь объяснение для полных чайников. Итак, во входной цепи Eи —>Rи —>Rвх пусть у нас течет сила тока в 10 мА. Коэффициент KI =100, следовательно, на выходе в цепи нагрузки Eвых —>Rвых —> Rн будет течь ток с силой в 1 А (10мА х 100). Но сам по себе такой ток не будет ведь гулять по этой цепи. Ему надо создать условия для протекания. Допустим, у нас нагрузка 10 Ом. Какое тогда напряжение должно быть в этой цепи для получения силы тока в этой цепи в 1 А? Вспоминаем дядюшку Ома: I=U/R. 1=Uвых /10, получаем U=10 В. Вот такое напряжение нам будет выдавать усилитель тока на выходе.

Но что, если нагрузка поменяет свое значение? Ток должен остаться таким же, не забывайте, то есть 1 А, так как это у нас усилитель тока. В этом случае, чтобы сила тока в цепи оставалась 1 А усилитель автоматически поменяет свое значение напряжения на выходе Uвых на 1=Uвых /5. Uвых =5/1=5 В. То есть на выходе у нас уже будет 5 Вольт.

Но также не забываем еще об одном параметре, который у нас находится в выходной цепи усилителя тока. Это выходное сопротивление Rвых . Поэтому, нам необходимо, чтобы выполнялось условие: Rвх

Усилитель мощности

Раньше было очень круто и модно собирать усилители мощности (УН) своими руками, включить Ласковый Май и вывернуть громкость на всю катушку. Сейчас же УМ может собрать или купить каждый, благо интернет и Алиэкпресс всегда под рукой.

Чем же УМ отличается от УН и УТ?

Если в УТ мы увеличивали только силу тока, в УН — напряжение, то в УМ мы увеличиваем в кратное число раз ток и напряжение.

Формула мощности для постоянного и переменного тока при активной нагрузке выглядит вот так:

U — напряжение, В

Следовательно, коэффициент усиления по мощности запишется как:

KP — коэффициент усиления по мощности

Pвых — мощность на выходе усилителя, Вт

Pвх — мощность на входе усилителя, Вт

Для усилителя мощности условия согласования входной цепи с источником входного сигнала и выходной цепи с нагрузкой для передачи максимальной мощности имеют вид: Rвх ≈ Rи и Rн ≈ Rвых .

Читайте также:
Стили деревянных домов: фото и проекты

Также не забывайте, что нагрузки могут быть как чисто активными (типа лампочки накаливания, резистора, различных нагревашек), так и иметь реактивную составляющую (катушки индуктивности, конденсаторы, двигатели и тд).

Выходная мощность усилителя

Выходная мощность усилителя, отдаваемая в активную нагрузку, будет выражаться формулой:

Pвых — выходная мощность усилителя, Вт

Iвых — сила тока в цепи нагрузки, А

UВых — напряжение на нагрузке, В

Мощность на нагрузку с реактивной составляющей будет уже выражаться через формулу:

Pвых — выходная мощность усилителя, Вт

Iвых — сила тока в цепи нагрузки, А

cos φ — где φ — это разность фаз между осциллограммой тока и напряжения

Например, разность фаз между током и напряжением в активной нагрузке равна нулю, следовательно, cos0=1. Поэтому формула для активной нагрузки принимает вид

Более подробно про это можно прочитать в статье про активное и реактивное сопротивление.

Максимальная выходная мощность, при которой искажение сигнала на выходе не превышает качественных значений усилителя, называют номинальной мощностью усилителя.

Ну и обобщенное правило, для того, чтобы было проще запомнить все эти три вида усилителя:

Виды усилителей по полосе пропускания

По ширине полосы пропускания усилители делятся на:

Усилители низкой частоты

Также их еще называют усилители звуковой частоты (УЗЧ). Они предназначенные для усиления сигналов с частотой от десятков Герц и до 20 кГц. 20 кГц — это предел частоты, которая может быть воспринята человеческим ухом. Поэтому, такой тип усилителей очень любят меломаны и радиолюбители.

Усилители высокой частоты

Они предназначены для усиления сигналов во всем диапазоне частот, используемых электроникой.

Широкополосные усилители

Они позволяют усиливать широкую полосу частот (например, от десятков герц до нескольких мегагерц). Здесь, думаю, все понятно.

Узкополосные усилители

Они усиливают узкую полосу частот. Это могут быть резонансные фильтры, а также фильтры, которые строятся на основе УВЧ и УНЧ.

Усилители постоянного тока

Усиливают сколь угодно медленные электрические колебания, начиная с частоты, равной нулю герц (постоянный ток).

Если вы желаете больше знать об усилителях, то читайте статью основные параметры усилителя.

Электронные усилители. Назначение, классификация, параметры и модель усилительного каскада.

Усилитель электрических сигналов – это электронное устройство, предназначенное для увеличения мощности, напряжения или тока сигнала, подве­денного к его входу, без существенного искажения его формы. Электрическими сигналами могут быть гармонические колебания ЭДС, тока или мощности, сигналы прямо­угольной, треугольной или иной формы. Частота и форма колебаний являются существенными факторами, опреде­ляющими тип усилителя. Поскольку мощность сигнала на выходе усилителя больше, чем на входе, то по закону со­хранения энергии усилительное устройство должно включать в себя источ­ник питания. Т.о., энергия для работы усилителя и нагрузки подводится от источника питания. Тогда обобщенную структурную схему усилительного устройства можно изобразить, как показано на рис. 1.

Рисунок 1. Обобщенная структурная схема усилителя.

Электрические колебания поступают от источника сигнала на вход усилителя, к выходу ко­торого присоединена нагрузка, энергия для работы усилителя и нагрузки подводится от источника питания. От источника питания усилитель отбирает мощность Ро – необходимую для усиления входного сигнала. Источник сигнала обеспечивает мощность на входе усилителя Рвх выходная мощность Рвых выделяется на активной части нагрузки. В усилителе для мощностей выполняется неравенство: Рвх Рисунок 2. Схема многокаскадного усилителя.

Входной каскад и предварительный усилитель предназначены для усиления сигнала до значения, необходимого для подачи на вход усилителя мощно­сти (выходного каскада). Количество каскадов предварительного усиления оп­ределяется необходимым усилением. Входной каскад обеспечивает, при необ­ходимости, согласование с источником сигнала, шумовые параметры усилителя и необходимые регулировки.

Выходной каскад (каскад усиления мощности) предназначен для отдачи в нагрузку заданной мощности сигнала при минимальных искажениях его формы и максимальном КПД.

Источни­ками усиливаемых сигналов могут быть микрофоны, счи­тывающие головки магнитных и лазерных накопителей информации, различные преобразователи неэлектрических парамет­ров в электрические.

Нагрузкой являются громкоговорители, электриче­ские двигатели, сигнальные лампы, нагреватели и т. д.Источники питания вырабатывают энергию с заданными параметрами — номинальными значениями напряжений, токов и мощности. Энергия расходуется в коллекторных и базовых цепях транзисторов, в цепях накала и анод­ных цепях ламп; используется для поддержания задан­ных режимов работы элементов усилителя и нагрузки. Нередко энергия источников питания требуется и для работы преобразователей входных сигналов.

Читайте также:
Фасады финских домов
Классификация усилительных устройств.

Усилительные устройства классифицируют по различным признакам. Основными являются: диапазон усиливаемых частот, функциональное назначение, характер и полоса усиливаемого сигнала. Основнымколичественным параметром усилителя является его коэффициент усиления (коэффициент передачи). Различают коэффициенты усиления напряжения Ku , тока Ki или мощности Kp .

По виду усиливаемых электрических сигналов усилители подразделяют на усилители гармонических(непрерывных) сигналов и усилители импульсных сигналов.

По ширине полосы пропускания и абсолютным значениям усиливаемых частот усилители подразделяются на следующие типы:

Усилители постоянного тока (УПТ) предназначены для усиления сигналов в пределах от низшей частоты = 0 до верхней рабочей частоты . УПТ усиливает как переменные составляющие сигнала, так и его постоянную со­ставляющую. УПТ широко применяются в устройствах автоматики и вычислительной техники.

Усилители напряжения, в свою очередь подразделяются на усили­тели низкой, высокой и сверхвысокой частоты.

По ширине полосы пропускания усиливаемых частот различают:

избирательные усилители (усилители высокой частоты – УВЧ), для которых действительно отношение частот /1;

широкополосные усилители с большим диапазоном частот, для которых отношение частот />>1(например УНЧ – усилитель низкой частоты).

Усилители мощности – оконечный каскад УНЧ с трансформаторной развязкой. Для того, чтобы мощность была максимальной Rвн. к = Rн, т.е. сопротивление нагрузки должно быть равно внутреннему сопротивлению коллекторной цепи ключевого элемента (транзистора).

По конструктивному исполнению усилители можно подразделить на две большие группы: усилители, выполненные с помощью дискретной технологии, то есть способом навесного или печатного монтажа, и усилители, выполненные с помощью интегральной технологии. В настоящее время в качестве активных элементов широко используются аналоговые интегральные микро­схемы (ИМС).

Показатели работы усилителей.

Одним из основных показателей усилительного каскада является точность воспроизведения формы усиливаемого сигнала. Форма выходного сигнала отличается от формы входного сигнала из-за линейных и нелинейных искажений, вносимых усилителем.

Линейные искажения возникают из-за реактивных элементов в схеме и определяются скоростью изменения сигнала во времени.

К показателям работы усилителей относятся вход­ные и выходные данные, коэффициент усиления, диапа­зон частот, коэффициент искажений, КПД и другие па­раметры, Характеризующие его качественные и эксплуа­тационные свойства.

К входным данным относятся номинальное значение входного сигнала (напряжения Uвх=U1, тока Iвх=I1или мощно­сти Pвх=P1), входное сопротивление, входная емкость или ин­дуктивность; ими определяется пригодность усилителя для конкретных практических применений. Входное со­противление Rвх в сравнении с сопротивлением источ­ника сигнала Rи предопределяет тип усилителя; в зави­симости от их соотношения различают усилители напря­жения (при Rвх >> Rи), усилители тока (при Rвх * Uвх и амплитудная характерис­тика имеет вид прямой линии, проходящей через начало координат. В реальных усилителях избавиться от помех не удается, поэтому его амплитудная характеристика от­личается от прямой.

Рис. 4. Амплитудно-частотная характеристика.

Амплитудно- и фазо-частотная характеристики отражают зависимость коэффициента усиления от частоты. Из-за присутствия в усилителе реактивных элементов сигналы разных частот усиливаются неодинаково, а вы­ходные сигналы сдвигаются относительно входных на различные углы. Амплитудно-частотная характеристика в виде зависимости представлена на рисунке 4.

Рабочим диапазоном частот усилителя называют интервал частот, в пределах которого модуль коэффициента K остается постоянным или изменяется в заранее заданных пределах.

Фазо-частотной характеристикой называется частотная зависимость угла сдвига фазы выходного сигнала по отношению к фазе входного.

Обратные связи в усилителях.

Обратной связью (ОС) называют связь между электрическими цепями, посред­ством которой энергия сигнала передается из цепи с более высоким уровнем сигнала в цепь с более низким его уровнем: например, из выходной цепи уси­лителя во входную или из последующих каскадов в предыдущие. Структурная схема усилителя с обратной связью изображена на рисунке 5.

Рис. 5. Структурная (слева) и принципиальная схема с отрицательной ОС по току (справа).

Обратная связь может возникать в схеме через паразитные цепи, такая об­ратная связь называется паразитной . Так как паразитные связи, как правило, нельзя рассчитать, а они могут существенно ухудшить работу усилителя, по­этому паразитные связи усилителя ослабляют, чтобы они практически не ска­зывались на его свойствах. Обратная связь возникает также благодаря конст­руктивным особенностям и физическим свойствам усилительных элементов. Такую обратную связь называют внутренней , ее усчитывают при моделирова­нии усилительных элементов. Внешняя обратная связь, искусственно введен­ная и правильно построенная, вводится для изменения свойств усилителя в же­лаемом направлении, придания ему определенных функциональных особенно­стей и для улучшения основных показателей его работы. Далее, по умолчанию, речь будет идти о внешней обратной связи.

Читайте также:
Цветная наклейка в детскую

Передача сигнала с выхода на вход усилителя осуществляется с помощью четырехполюсника В. Четырехполюсник обратной связи представляет собой внешнюю электрическую цепь, состоящую из пассивных или активных, линей­ных или нелинейных элементов. Если обратная связь охватывает весь усили­тель, то обратная связь называется общей: если обратная связь охватывает от­дельные каскады или части усилителя, называется местной. Таким образом, на рисунке пред­ставлена структурная схема усилителя с общей обратной связью.

Модель усилительного каскада.

Усилительный каскад конструктивное звено усилителя – содержит один или более активных (усилительных) элементов и набор пассивных элементов. На практике, для большей наглядности, сложные процессы исследуют на простых моделях.

Один из вариантов транзисторного каскада для усиления пере­менного тока приведен на рисунке слева. Транзистор V1 р-п-р типа вклю­чен по схеме с общим эмиттером. Входное напряжение база – эмиттер создается источником с ЭДС Еc и внутренним сопротивлением Rc источника. В цепи базы установлены резисторы R1и R2. Коллектор тран­зистора соединен с отрицательным зажимом источника Eк через резисторы Rк и Rф. Выходной сигнал снимается с выводов коллектора и эмиттера и через конденсатор С2 поступает в нагрузку Rн. Конденсатор Сф совместно с резистором образует -звено фильтра (положительную обратную связь – ПОС), который требуется, в частности, для сглаживания пульсаций питающего напряжения (при маломощном источнике Eк с большим внутренним сопротивлением). Так же, для большей стабильности устройства, в цепь эмиттера транзистора V1 (отрицательная обратная связь – ООС) можно дополнительно включить RC-фильтр, который будет припятствовать передачи части выходного сигнала обратно на вход усилителя. Таким образом, можно избежать эффекта самовозбуждения устройства. Обычно искусственно созданная внешняя ООС позволяет добиться хороших параметров усилителя, однако это справедливо в общем случае только для усиления постоянного тока или низких частот.

Лекция №5. Электронные усилители;

Электронные усилители.

Электронным усилителем называют устройство, обеспечивающее увеличение мощности электрических сигналов, поступающих на его вход.

Увеличение мощности сигнала в усилителе происходит за счет преобразования энергии источника питания. Это преобразование происходит с помощью активных элементов, которые управляются входными сигналами.

Входной сигнал подается через электрическую цепь, которая называется входной или входом усилителя.

Электрическая цепь, в которой образуется усиленный сигнал, называется выходной цепью. Для выделения усиленного сигнала в выходную цепь включается нагрузка.

Нагрузкой может служить резистор, колебательный контур, обмотка трансформатора, откл. пластины ЭЛТ.

Нагрузка, по которой протекает постоянная составляющая выходного тока, называется нагрузкой по постоянному току.

Сопротивление цепи, по которой протекает переменная составляющая выходного тока, образует нагрузку по переменному току.

Для разделения нагрузок по переменному и постоянном току применяются разделительные конденсаторы и тр-ры.

Простейший усилитель содержит один активный элемент с присоединенным к нему пассивными элементами.

Классификация усилителей.

Классификация усилителей может быть проведена по нескольким признакам.

1. Характеру усиливаемых сигналов:

гармонических сигналов, импульсных, усилители постоянного тока;

2. По ряду усилительных элементов:

транзисторные, ламповые, диодные;

3. По роду усиливаемой величины:

4. По числу каскадов:

одно и многокаскадные;

5. По диапазону частот электрических сигналов, в пределах которых усилитель может удовлетворительно работать.

6. По виду связей усилителя с источниками входного сигнала и нагрузкой, а также между отдельными каскадами в многокаскадных усилителях:

с гальваническими связями.

1. Усилители низкой частоты (УНЧ):

предназначены для усиления непрерывных периодических сигналов, частотный спектр которых лежит в пределах от единиц Гц до 10 кГц.

Характерной особенностью УНЧ является отношение усиливаемых частот, составляющее от 10 до 10 тысяч.

2. Усилители постоянного тока (УПТ):

Усилители медленно меняющихся напряжений и токов, усиливающие сигналы в диапазоне частот от до высшей рабочей частоты , составляющей нередко десятки и сотни килогерц.

3. Избирательные (или селективные) усилители, усиливающие сигналы в очень узкой полосе частот.

Для них характерна небольшая величина отношения верхней частоты к нижней (обычно ).

Они используются как на низких так и на высоких частотах и используются в качестве частотных избирательных фильтров.

4.Широкополосные или импульсные усилители. Применяются для

усиления сигналов в широкой полосе частот (от нескольких килогерц и ниже) до нескольких мегагерц и выше).

Читайте также:
Что такое дизайн-проект интерьера и почему он необходим

Основные технические показатели и характеристики

усилителей.

Важнейшими техническими показателями усилителя являются:

1. Коэффициенты усиления (по I,U и P);

2. Входное и выходное сопротивления;

3. Выходная мощность;

4. Коэффициент полезного действия;

5. Диапазон усиливаемых частот;

6. Динамический диапазон амплитуд;

7. Нелинейные, частотные и фазовые искажения.

Коэффициенты усиления.

Коэффициентом усиления называется величина, показывающая, во сколько раз сигнал на выходе усилителя больше, чем на его входе.

В многокаскадном усилители

,

где – число каскадов усиления.

В электронике получил распространенный способ выражения усилительных свойств в логарифмических единицах – децибелах (ДБ).

;

Входное и выходное сопротивления.

Входное сопротивление представляет собой сопротивление между входными зажимами усилителя.

Оно равно ;

Выходное сопротивление определяют между выходными зажимами усилителя ;

Выходная мощность.

Выходная мощность- это полезная мощность развиваемая усилителем в нагрузке.

При активной характеристике нагрузки мощность равна

;

Электронные усилители

Термин усилитель весьма многозначен. Это может быть гидроусилитель, хорошо известный автомобилистам, магнитный усилитель, применявшийся когда-то в системах автоматики. Также известны электромеханические и релейные усилители.

Принцип работы всех усилителей одинаков: под воздействием слабого управляющего сигнала на выходе усилителя появляется мощный выходной сигнал. Естественно, что для получения выходного сигнала большой мощности требуется внешний источник энергии.

Например, на управление катушкой реле требуется мощность в доли ватта, в то время, как контакты могут коммутировать нагрузку в несколько киловатт. Что называется, налицо усиление по мощности. Но в этой статье будут вкратце рассмотрены только электронные усилители.

Электронные усилители

Именно они являются наиболее распространенным узлом различных приборов и устройств. В зависимости от выполняемой функции, от природы входного сигнала, усилители разделяются на несколько типов. В одном случае это, например, сигнал термопары, а в другом музыка, речь или сигнал телевизионной антенны, работающей в дециметровом диапазоне волн.

Но все электронные усилители объединяет то, что они используют явление электропроводимости в различных средах. Прежде всего это вакуум (электронные лампы) и полупроводники (транзисторы и микросхемы).

Большая часть электронных усилителей в настоящее время выполнена на полупроводниках, конструкции на лампах используются любителями очень качественного звука, меломанами, и еще там, где без ламп обойтись невозможно.

Усилители конструктивно могут быть как отдельным устройством, так и составной частью какого-либо прибора, например измерительного.

Усилители постоянного тока (УПТ)

Эти усилители работают в диапазоне частот от нуля до некоторой верхней частоты. Другими словами они способны усиливать постоянное напряжение. При этом, конечно же, усиливается и переменная составляющая сигнала. Схема, если не всего, то какой-то части УПТ показана на рисунке 1.

Рисунок 1. Схема усилителя постоянного тока

Для того, чтобы иметь возможность усиливать «постоянку», связь между каскадами выполняется с помощью резисторов, диодов, стабилитронов или вовсе непосредственно. Именно этот вариант и показан на рисунке 1. Наиболее широкое применение УПТ находят в системах автоматики, преобразователях неэлектрических величин, в измерительных приборах, в усилителях сигналов разных датчиков.

УПТ являются также основой для создания операционных усилителей (ОУ), которые широко применяются в различных приборах. Собственно, все УПТ в настоящее время строятся на основе ОУ, достоинства которых широко известны и не подлежат никакому сомнению.

На рисунке 2 показана схема УПТ на базе операционного усилителя. Как видно, она намного проще предыдущей, хотя параметры ее намного лучше.

Рисунок 2. УПТ на основе ОУ

Усилители переменного тока

Усилители переменного тока отличаются от УПТ тем, что усиливают лишь переменную составляющую входного сигнала. В качестве примера на рисунке 3 показан микрофонный усилитель для динамического микрофона типа МД-52 или ему подобным, которым комплектовались отечественные магнитофоны.

Рисунок 3. Микрофонный усилитель

На входе и выходе усилителя, выполненного на микросхеме, установлены разделительные конденсаторы, что позволяет пропустить через усилитель только переменную составляющую сигнала.

Такая схема называется также микрофонным усилителем. Будучи подключенной к звуковой карте компьютера упомянутый микрофон позволяет получить прекрасный звук, гораздо лучший, нежели при помощи китайского компьютерного микрофона.

Усилитель прекрасно работает даже от +5В, поэтому запитать его можно от разъема USB, или вывести 12 вольт из компьютера. Налаживания устройство не требует, начинает работать сразу. Малое количество деталей позволяет собрать эту схему навесным монтажом, используя выводы деталей. При этом следует стремиться, чтобы соединения были как можно короче. Это спасет от наводок и помех.

Усилители высокой частоты

Применяются в основном в радиоприемниках и телевизорах. Их назначение несколько усилить входной сигнал, например, от антенны. Далее происходит супергетеродинное преобразование, и дальнейшее основное усиление происходит на промежуточной частоте. Спецификой таких усилителей является применение ВЧ транзисторов, а также особенности монтажа устройства. Подобный монтаж можно увидеть, если открыть радиочастотный блок любого современного телевизора.

Полосовые усилители

Полосовые усилители предназначены для усиления сигналов в узком диапазоне частот. В качестве примера можно привести усилители промежуточной частоты (УПЧ). Полоса частот в таких усилителях обеспечивается за счет колебательных контуров и фильтров сосредоточенной селекции (ФСС) или пьезокерамических фильтров (ПКФ). Ведь усилить сигнал в узкой полосе частот намного проще, чем создавать очень широкополосный усилитель.

Кроме уже упомянутых усилителей существует весьма большое количество из разновидностей, вот еще некоторые из них.

Предварительные усилители

Их назначение усилить сигнал от слабого источника до уровня, приемлемого для дальнейших каскадов. Например, поднять уровень магнитофонной приставки до входного уровня оконечного усилителя звуковой частоты. Предварительный усилитель также может включать в себя регуляторы тембра и громкости.

Для воспроизведения грамзаписи с виниловых дисков применяются специальные предварительные усилители-корректоры, формирующие частотную характеристику для работы с головкой звукоснимателя. Когда музыку записывали и слушали на магнитофонах, в ходу были усилители записи и воспроизведения. Назначение таких усилителей состояло в формировании требуемой частотной характеристики канала запись – воспроизведение.

Измерительные усилители

Чаще всего применяются в измерительных приборах, средствах автоматики, контроллерах управления промышленным оборудованием. Эти усилители также называют инструментальными. Они обладают очень малым собственным шумом, очень большим коэффициентом усиления (при разорванной цепи ОС) и очень большим коэффициентом подавления синфазных помех. Такие очень высокие характеристики достигаются применением определенного соединения нескольких ОУ. Вот, как много всяких «очень» у измерительных усилителей. На рисунке 4 показана классическая схема инструментального усилителя.

Рисунок 4. Схема инструментального усилителя

Наряду с этой схемой широкое применения находят также схемы на одном ОУ или двух. Встречаются и более сложные конструкции. В последнее время измерительные усилители выпускаются в интегральном варианте,- все что показано на рисунке 4 умещается в одном корпусе, при этом количество подстроечных элементов минимально, как правило, один внешний резистор. На рисунке 4 это R1, а на рисунке 5 резистор RG (GAIN).

Внутреннее устройство интегрального измерительного усилителя типа AD623, естественно, упрощенная схема показано на рисунке 5 . Отличительная особенность этого усилителя малая цена и способность работать с однополярным питанием.

Рисунок 5. Схема интегрального измерительного усилителя типа AD623

Более подробно про электронные усилители вы можете узнать здесь.

Любите умные гаджеты и DIY? Станьте специалистом в сфере Internet of Things и создайте сеть умных гаджетов!

Записывайтесь в онлайн-университет от GeekBrains:

Изучить C, механизмы отладки и программирования микроконтроллеров;

Получить опыт работы с реальными проектами, в команде и самостоятельно;

Получить удостоверение и сертификат, подтверждающие полученные знания.

Starter box для первых экспериментов в подарок!

После прохождения курса в вашем портфолио будет: метостанция с функцией часов и встроенной игрой, распределенная сеть устройств, устройства регулирования температуры (ПИД-регулятор), устройство контроля влажности воздуха, система умного полива растений, устройство контроля протечки воды.

Вы получите диплом о профессиональной переподготовке и электронный сертификат, которые можно добавить в портфолио и показать работодателю.

Схема управления электрозадвижкой

Здесь представлены наиболее простые схемы управления электрозадвижками, применяемые в КИП и А на основе концевых (путевых) выключателей.

Внимание! Так как схемы работают под напряжением 220 ⁄ 380 Вольт, опробование и наладка должна производиться квалифицированным персоналом с соответствующей группой допуска по электробезопасности.

Схема управления электрозадвижкой в простейшем случае представляет собой блок концевых (путевых) выключателей, связанных с кнопками управления и электормагнитными реле (пускателями). В большинстве случаев содержит блокировочный выключатель ручного упрвления (КБР).

Может содержать токовое реле выключения (мгновенное выключение при превышении уставки тока) и телеметрический указатель положения задвижки. В данной статье не рассматриваются.

На рисунках 1 и 2 изображены две схемы управления задвижками. В первой используются четыре концевых выключателя для управления электродвигателем и лампочками сигнализации положения задвижки, во второй – два.

Общими элементами являются:

K1 – электромкгнитное реле (пускатель, далее реле) открытия;
K2 – электромкгнитное реле закрытия;
SB1 – кнопка “Открыть”;
SB2 – кнопка “Закрыть”;
SB3 – кнопка “Стоп”;
E1 – лампа, индицирующая открытие задвижки “Открыта”;
E2 – лампа, индицирующая закрытие задвижки “Закрыта”;
S6 – тепловое реле, выключающее электродвигатель при повышение тока нагрузки – заклинивание задвижки, редуктора, исчезновении одной фазы.
S1 – контакт КБР, является предохранительным выключателем схемы управления электрозадвижкой. Когда задвижка переведена на ручное управление блокирует цепи управления электрозадвижки, предотвращая случайное включение ее с пульта управления, чтобы не пострадал технологический персонал и т.д.
S2 – S5 – контакты концевых (путевых) выключателей, управляемые кулачковым механизмом блока, жестко механичекски связанным с управляемой задвижкой.
K1.3 – K1.5, K2.3 – K2.5 – силовые контакты реле K1 и K2, подающие напряжение 380 Вольт на электродвигатель.


Рис. 1. Схема управления электрозадвижкой с четырьмя концевыми выключателями

Когда электрозадвижка находится в среднем положении, в выключенном ручном режиме, то фаза “C” проходит через контакты стоповой кнопки SB3, замкнутый контакт КБР (S1) и конечные выключатели S2 и S3 на контакты кнопок SB1 и SB2 (соответственно: открыть, закрыть).

При нажатии кнопки SB1 “Открыть”, срабатывает реле K1 и самоподхватывается через контакты K1.1. Через его силовые контакты K1.2 – K1.5 подается напряжение на электродвигатель M1, задвижка начинает открываться до тех пор, пока не нажата кнопка SB3 “Стоп” или кулачковый механизм блока концевых выключателей не разомкнет контакт S2, отвечающий за останов задвижки в положении “Открыта”. При достижении этого положения, т.е. задвижка в положении “Открыта”, контакт выключателя S4 должен замкнуться (выставляется соответствующим кулачком в блоке концевых выключателей), ламочка E1, индицирующая открытое положение задвижки начинает гореть. Дальнейшие попытки нажать кнопку “Открыть” ни к чему не приводят, т.к. контакты конечника S2 разомкнуты и напряжение на кнопку SB1 “Открыть” не подается. Зато, на кнопку SB2 “Закрыть” поступает напряжение через контакты S3, при ее нажатии задвижка закрывается.

Аналогичным образом осуществляется и механизм закрытия задвижки. Если она находится в среднем или открытом положении, в выключенном ручном режиме, то фаза “C” проходит через контакты стоповой кнопки SB3, замкнутый контакт КБР (S1) и конечный замкнутый выключатель S3 на кнопку SB2 “Закрыть”. При ее нажатии срабатывает и самоподхватывается через контакты K2.1 реле K2, напряжение через его силовые контакты подается на двигатель M1 (с обратным включением фаз “B” и “C”) и задвижка начинает закрываться до тех пор, пока не будет нажата кнопка SB3 “Стоп” или не разомкнется концевой выключатель S3, настроенный на размыкание при достижении задвижкой закрытого состояния. Также загорается лампа E2, показывающая, что задвижка закрыта. Для этого должен быть правильно выставлен толкатель кулачкового механизма, отвечающий за замыкание контакта выключателя S4.

Нормальнозамкнутые контакты реле K1.2 и K2.2 размыкаются разнонаправленно при срабатывании соответсвующего реле, тем самым предотвращая одновременное включение обоих реле, что привело бы к межфазному замыканию.

Конечник S1 (КБР), включен непосредственно в цепь блока контаков путевых выключателей S2-S5, что позволяеят выполнить монтаж цепей управления задвижки от щита управления 5-жильным кабелем.

В этой схеме управления электрозадвижкой задействованы четыре концевых выключателя блока концевиков, – два на отключение цепей управления, два на включение лампочек индикации, что требует установки каждого концевика отдельно. Но если по технологии требуется, чтобы лампочки индикации конечнго положения загорались раньше, чем это положение достигнуто, то это может быть и достоинстом.


Рис. 2. Схема управления электрозадвижкой с двумя концевыми выключателями

Аналогичен предыдущей схеме, за исключением, того что контакты S1 КБР вынесены за пределы блока концевых выключателей, т.е. фаза “C” подается непосредственно на контакты S2 и S3. Это позволяет обойтись двумя концевыми выключателями, используя их нормальноразомкнутые контакты для включения лампочек положения задвижки. Это очень удобно, так как лампочки загораются только в тот момент, когда действительно сработал тот или иной конечный выключатель.

Как уже было сказано выше, лампочки индикации задвижки загораются только в тот момент, когда действительно сработал тот или иной конечный выключатель.

Если требуется подключить S1 (КБР), то при монтаже блока концевых выключателей на задвижке в кабеле потребуется две дополнительных жилы. То есть в кабеле должно быть не меньше семи жил.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: