Электрическая цепь. Схема простой электрической цепи постоянного тока. _v_

Схемы Электрических Цепей Постоянного Тока

При расчете электрических цепей в большинстве случаев известны параметры источников ЭДС или напряжения, сопротивления элементов электрической цепи, и задача сводится к определению токов в ветвях цепи. Таким образом, электрическая цепь на рис.


Точка Н определяет номинальный режим, если напряжение и ток соответствуют их номинальным значениям Uном и Iном, приведенным в паспорте источника электрической энергии.

Элемент электрической цепи, параметры которого сопротивление и др.
Электрические цепи (часть 1)

Элементы цепи Электрическая цепь содержит в себе такие составляющие, как источники энергии, потребители, а также соединяющие их провода. По закону Ома токи в каждой ветви: По первому закону Кирхгофа общий ток Смешанное соединение — комбинация первых двух соединений, где параллельное соединение может быть преобразовано к последовательному.

Для их составления необходимо задать условные направления токов в ветвях номер введем в соответствии с порядковым номером сопротивлений.

Метод узловых потенциалов Вторым методом, которым пользуются для решения сложных цепей, является метод узловых потенциалов. Тогда из выражения 1.

Внешняя вольт-амперная характеристика источника электрической энергии Точка X вольт-амперной характеристики источника электрической энергии отвечает режиму холостого хода х.

Подключение цепи к источнику постоянной ЭДС 5. Существуют дополнительные приборы цепи, например, выключатели, измерители тока и защитные аппараты.

КОНДЕНСАТОР В ЦЕПИ ПОСТОЯННОГО И ПЕРЕМЕННОГО ТОКА [РадиолюбительTV 89]

Электрическая цепь постоянного тока

Алгебраическая сумма падений напряжений на резистивных элементах в любом замкнутом контуре равно алгебраической сумме ЭДС. Нелинейный элемент, например лампа накаливания, имеет сопротивление, величина которого увеличивается при повышении напряжения, а следовательно и тока, подводимого к лампочке.

Источник электрической энергии характеризуется понятием ЭДС Е , под которой понимают величину, численно равную энергии, получаемой внутри источника единицей электрического заряда.

При расчете в схеме электрической цепи выделяют несколько основных элементов. Этот метод основан на составлении уравнений по первому закону Кирхгофа: Схема сложной электрической цепи с двумя узлами.

Для разных электротехнических устройств указывают свои номинальные параметры.

Электрическая цепь в режиме короткого замыкания имеет сопротивление, которое равно нулю. В этой схеме реальные элементы цепи изображаются условными обозначениями, причем вспомогательные элементы цепи обычно не изображаются, а если сопротивление соединительных проводов намного меньше сопротивления других элементов цепи, его не учитывают.

Как видно, при параллельном соединении источников ток и мощность внешней цепи равны соответственно сумме токов и мощностей источников.

В случае последовательного соединения сопротивлений в ветви В общем виде уравнения узловых потенциалов имеют вид: Если в схеме имеются источники тока, то слагаемое в правой части будет равно сумме источников тока: Метод узловых потенциалов имеет преимущество, если число независимых узлов меньше числа контуров. Желательно во всех контурах положительные направления обхода выбирать одинаковыми, например, по часовой стрелке, как показано на рис.
Устройство и принцип работы двигателя постоянного тока. Схема двигателя постоянного тока.

Похожие статьи

Такая система известна, как электрическая цепь. Схема электрической цепи.

Ознакомившись с основными характеристиками и видами такой системы, как электрическая цепь, становится возможным понять принцип функционирования любого электрооборудования.

Отключение цепи от источника постоянной ЭДС 5. В противном случае это слагаемое отрицательно. При анализе электрической цепи рассматривают следующие режимы работы: холостого хода, номинальный, короткого замыкания и согласованный.

Электрическая цепь и электрический ток, протекающий по ней, характеризуют электромагнитные процессы при помощи напряжения и силы тока. Для электрической цепи на рис.

Для контура. Это произойдет, если к зажимам аb двухполюсника присоединена внешняя цепь с источниками питания. Точка К характеризует режим короткого замыкания к. Первый закон Кирхгофа: сумма токов в узле равна нулю 1.

Elektrotechnik fuer Grundlagen der Elektronik


Эта вольт-амперная характеристика строится по двум точкам 1 и 2 рис. Активный двухполюсник содержит источники электрической энергии, а пассивный двухполюсник их не содержит.

Мощность цепи несинусоидального тока 4. Для расчета цепей с двухполюсниками реальные активные и пассивные элементы цепи представляются схемами замещения. По этой причине для расчета сложных электрических цепей разработаны более рациональные методы расчета, основные из них рассмотрены ниже. За направление электрического тока в электротехнике принято направление, противоположное направлению движения электронов. Сложной электрической цепью называется цепь, содержащая несколько источников и которую нельзя свернуть до простой цепи последовательного или параллельного соединения.

Читайте также:
Такой близкий русский стиль в интерьере

Зная токи, можно найти напряжения на элементах цепи, мощность отдельных элементов и электрической цепи в целом, мощность источников и др. Контур — любой замкнутый путь, проходящий по нескольким ветвям.
как решать задачи со сложными схемами

Элементы цепи

При сравнении внешних характеристик источника ЭДС рис. Мощность трёхфазной цепи 3.

Классический метод расчёта переходных процессов 5. В зависимости от электропроводности все вещества подразделяют на: 1.

Последовательное соединение в цепи Большое количество электрических цепей состоят из нескольких приемников тока.

Согласованный режим Согласованный режим электрической цепи обеспечивает максимальную передачу активной мощности от источника питания к потребителю. На схеме этот элемент выглядит следующим образом. В этой схеме реальные элементы цепи изображаются условными обозначениями, причем вспомогательные элементы цепи обычно не изображаются, а если сопротивление соединительных проводов намного меньше сопротивления других элементов цепи, его не учитывают.

Метод узловых потенциалов

Идеальному источнику тока приписывают внутреннее сопротивление, стремящееся к бесконечно большому значению, и неизменный ток Iк не зависящий от напряжения на его зажимах, равный току коротного замыкания, вследствие чего неограниченное увеличение присоединенной к источнику нагрузки сопровождается теоретически неограниченным возрастанием напряжения и мощности. Электрическая цепь и электрический ток, протекающий по ней, характеризуют электромагнитные процессы при помощи напряжения и силы тока.

Различают два рода тока: 1. Ветвь электрической цепи схемы — участок цепи с одним и тем же током. Последовательное включение источников питания источников ЭДС применяется тогда, когда требуется создать напряжение требуемой величины, а рабочий ток в цепи меньше или равен номинальному току одного источника ЭДС рис. Между узлами 1 и 3 имеются две параллельные ветви с источниками ЭДС Е1 и Е2 , между узлами 2 и 3 также имеются две параллельные ветви с резисторами R1 и R2. Данное устройство работы системы применяется к любому электрическому бытовому прибору.

По этой причине для расчета сложных электрических цепей разработаны более рациональные методы расчета, основные из них рассмотрены ниже. Сопротивление в этой электрической цепи приравнивается к сумме сопротивлений всех проводников системы. При сравнении внешних характеристик источника ЭДС рис. В случае когда у одного приемника энергии сопротивление меньше, через него может пройти больше тока, чем через другие элементы системы.

Классический метод расчёта переходных процессов 5. Стрелка в кружке указывает направление возрастания потенциала внутри источника ЭДС. Электрический ток в такой электрической системе имеет несколько вариантов пути прохождения. Это уравнение является линейным. В состав цепи входят: 1.
Законы Кирхгофа — Теория и задача

Тема 1.2. Электрические цепи постоянного тока

Электрические цепи и ее элементы

Электрической цепью постоянного тока называют совокупность устройств и объектов: источников электрической энергии, преобразователей, потребителей, коммутационной, защитной и измерительной аппаратуры, соединительных проводов или линии электропередачи.

Электрические и электромагнитные процессы в этих объектах описываются с помощью понятий об электродвижущей силе (ЭДС – E ), токе ( I ) и напряжении ( U ).

Элементы цепи можно разделить на три группы:

1) элементы, предназначенные для генерирования электроэнергии (источники энергии, источники ЭДС);

2) элементы, преобразующие электроэнергию в другие виды энергии: механическую, тепловую, световую, химическую и т.д. (эти элементы называются приемниками электрической энергии или потребителями);

3) элементы, предназначенные для передачи электрической энергии от источника к приемникам (линии электропередачи, соединительные провода); элементы, обеспечивающие уровень и качество напряжения и т.д.

Источники питания цепи постоянного тока – это гальванические элементы, электрические аккумуляторы, электромеханические генераторы, термо- и фотоэлементы и др.

Читайте также:
Стоит ли использовать дранку для кровли?

Электрическими приемниками или потребителями постоянного тока являются электродвигатели, преобразующие электрическую энергию в механическую, нагревательные и осветительные приборы, электролизные установки и др. Все электоприемники характеризуются электрическими параметрами, среди которых основные – напряжение и мощность. Для нормальной работы электроприемника на его зажимах необходимо поддерживать номинальное напряжение. По ГОСТ 721-77 напряжение равно 27, 110, 220, 440 В, так же 6, 12, 24, 36 В.

Коммутационная аппаратура служит для подключения потребителей к источникам, то есть для замыкания и размыкания источников электроцепи.

Защитная аппаратура предназначена для размыкания цепи в аварийных ситуациях.

Измерительная аппаратура предназначена для замера тока, напряжения и других электрических величин.

Линии электропередачи используются, когда источники и потребители удалены друг от друга на большие расстояния. Соединительные провода предназначены для соединения между собой зажимов или электродов элементов электрической цепи.

Активные и пассивные элементы

Элемент называется пассивным , если он не может вызывать протекание тока, то есть если он не создает тока или ЭДС. Если собрать несколько пассивных элементов (резисторы, конденсаторы, катушки индуктивности) в электрическую цепь, то ток в цепи не потечет.

Элемент, который создает ЭДС и вызывает протекание тока, называется активным (источники электроэнергии).

Линейные и нелинейные цепи

Электрическая цепь называется линейной , если электрическое сопротивление или другие параметры участков, не зависят от значений и направлений токов и напряжений. Электрические процессы линейной цепи описываются линейными алгебраическими и дифференциальными уравнениями.

Если электрическая цепь содержит хотя бы один нелинейный элемент , то она является нелинейной.

Топологические элементы электрической цепи.

Графическое изображение электрической цепи называется электрической схемой. Электрическая схема включает: узлы, ветви, контуры.

Ветвь – совокупность элементов, соединенных последовательно. По ветви протекает один и тот же ток.

Узел – точка соединения трех или более ветвей.

Контур – совокупность ветвей, при обходе которых осуществляется замкнутый путь.

Простейшая электроцепь имеет один контур с одной ветвью и не имеет узлов. Сложные электроцепи имеют несколько контуров.

Положительные направления тока, напряжения и ЭДС.

Чтобы правильно записать уравнения, описывающие процессы в электрических цепях, и произвести анализ этих процессов, необходимо задать условные положительные направления ЭДС источников питания, тока в элементах или ветвях цепи и напряжения на зажимах элементов цепи или между узлами цепи.

Внутри источника ЭДС постоянного тока положительным является направление ЭДС от отрицательного полюса к положительному полюсу. Это соответствует определению ЭДС как величины, характеризующей способность сторонних сил вызывать электрический ток.

По отношению к источнику ЭДС все элементы цепи составляют внешний участок цепи.

За положительное направление тока в цепи принимают направление, совпадающее с направлением ЭДС. Во внешней цепи положительным является направление от положительного полюса источника к отрицательному полюсу. В электронной теории – направление совпадает с направлением положительно заряженных частиц.

Условным положительным направлением падения напряжения (или просто напряжения) на элементах цепи или между двумя узлами цепи принимают направление, совпадающее с условно положительным направлением тока в этом элементе или в этой ветви. Положительное направление напряжения на зажимах источника ЭДС всегда противоположно положительному направлению ЭДС.

Действительные направления электрических величин, определяемые расчетом, могут совпадать или не совпадать с условными направлениями. При расчетах если определено, что ток, ЭДС и напряжения положительны, то их действительные направления совпадают с условно принятыми положительными направлениями, если отрицательны, то не совпадают.

Основные законы электрической цепи

Условное обозначение параметров в цепях постоянного и переменного тока.

i – переменный ток; I – постоянный ток;

u – переменное напряжение; U – постоянное напряжение;

e – переменная ЭДС; E – постоянная ЭДС;

Простая электрическая цепь и её основные составные части

Для того чтобы электроток мог протекать длительное время, необходимо выполнение нескольких условий. Одним из них является замкнутость электрической цепи. Её составные части обеспечивают создание контура, позволяющего протекать носителям зарядов. Минимальное количество необходимых для этого элементов равняется трём. Но реальная цепочка может быть сколь угодно большой, хотя некоторые части должны в ней быть обязательно.

  1. Общие сведения
  2. Элементы электрической цепи
  3. Графическое изображение
  4. Пример реальной цепи
Читайте также:
Установка обратного клапана на насос. Основные особенности обратных клапанов и их установка

Общие сведения

Под электрической цепью понимают объединение различных радиоэлектронных устройств, соединённых между собой проводниками. Задача такой совокупности заключается в обеспечении протекания электрического тока заданных характеристик. Параметры такой системы описывают с помощью трёх основных величин:

  • тока — упорядоченного движения носителей заряда, вызванного под действием внешних сил, например, электромагнитным полем;
  • напряжения — работой, выполняемой для перемещения заряженной частицы из одной точки тела в другую;
  • сопротивления — величины, зависящей от импеданса каждого элемента цепи.

Существует два способа анализа электроцепи — энергетический и информационный. Под первым понимается изучение процессов, связанных с преобразованием и передачей энергии. Нахождением токов и напряжений в различных местах схемы. Второй же предполагает выяснение реакции при изменении внешнего воздействия.

Существует два состояния электрической схемы — замкнутая и разомкнутая. Если имеется разрыв в каком-то месте, через него ток течь не будет. Значит, между двумя точками разомкнутого участка не появится разность потенциалов (напряжение). Замкнутый же контур обеспечивает возможность циркулирования электрических зарядов. Связь между элементами цепи выполняется с помощью проводников. То есть тел, обладающих незначительным сопротивлением.

Для того чтобы возникло движение электронов необходим источник силы — энергии. Это генератор вырабатывающий ток или напряжение. Называют его источником. Различие между генераторами в том, что токовый умеет поддерживать постоянную силу тока на своём выходе, вне зависимости от остальной части схемы. Источник же напряжения выдаёт постоянную электродвижущую силу (ЭДС), на величину которой не влияет ток в цепи.

Вырабатываемая энергия должна куда-то направляться, то есть где-то использоваться. Устройство, забирающее себе электроэнергию, называют потребителем. В качестве его может быть любой элемент схемы, не являющийся генератором и обладающий сопротивлением.

Таким образом, простейшая электрическая цепь состоит из трёх элементов — источника энергии, проводников, потребителя. Реальная электроцепь может содержать сколь угодное количество потребителей. Одни из них могут накапливать энергию, а после отдавать, другие же только потребляют, преобразовывая её в другой вид.

Элементы электрической цепи

Источники тока и напряжения относятся к активным элементам электрической схемы. К ним же причисляют полупроводниковые приборы, например, транзисторы, диоды. Индуктивность, конденсатор, сопротивление, напротив, считают пассивными элементами.

В зависимости от частей, входящих в схему она может быть пассивной или активной. В первом случае она состоит только из электрически независимых элементов, если же в ней есть хотя бы один активный, то цепь считается энергозависимой.

Каждый прибор в электрической схеме можно охарактеризовать с двух сторон:

  • качественной — зависит от физических параметров, определяет назначение и функцию элемента;
  • количественной — характеризует величину прибора.

Источники питания разделяют на первичные и вторичные. К первым относят генераторы, то есть устройства, преобразующие энергию различного вида в электричество. Ими могут быть аккумуляторы, электромашины, гальванические батареи. Вторичные же источники преобразуют электричество из одного вида в другой. К ним можно отнести блоки выпрямления, инвертирования, трансформирования.

Вспомогательные элементы — это те, что обеспечивают правильную работу электрической схемы. Это всевозможные проводники, коммутационные устройства, измерительная и защитная аппаратура. Потребителем же является оборудование преобразующее электричество в полезную работу. Например, устройство нагрева, вентилирования, двигатели, различная бытовая и промышленная техника.

Другими словами, от источника ток начинает течь по проводникам через ряд электронных устройств, приводящих его характеристику к нужному виду. Затем он подаётся на нагрузку оказывающую сопротивление и выполняющую работу. Далее через потребитель ток возвращается к источнику. Замкнутость линии, вне зависимости от используемых элементов необходима, так как в ином случае не возникает разность потенциалов.

Подключение элементов в цепи может быть реализована тремя способами:

  • параллельным — начало различных устройств соединены в одной точке, а концы в другой;
  • последовательным — все части цепи подключаются поочерёдно друг к другу;
  • смешанным — комбинация двух предыдущих видов.

Перечислить все радиоэлементы довольно сложно, так как их много. Но из основных можно выделить: резистор, индуктивность, конденсатор, транзистор, диод, интегральную микросхему, светоизлучатели и фотоприемники.

Графическое изображение

Реальную или виртуальную электрическую цепь можно изобразить на рисунке. Называется она принципиальной или электрической схемой. Различие между ними в том, что на первой чертят основные блоки и их соединение, а на второй — указывают расположение и подключение.

Читайте также:
Узкий комод поможет сэкономить пространство в небольшом помещении

По сути, схема является графическим изображение электрической цепи. Для обозначения тех или иных элементов используют специальные условные символы. Их рисунок имеет свой стандарт, так что любой разбирающийся в электронике или электрике сможет понять для чего предназначена та или иная схема.

В России черчение всех типов электронных узлов выполняют согласно ГОСТ 2 .702−2011.

Например, простейшее обозначение имеют проводники — прямая линия. С их помощью показывают, как соединяются элементы. Они являются основой для любой электрической схемы. Кроме проводников и непосредственно самих элементов, в схеме всегда есть ещё два условных параметра:

  • ветвь — участок по которому протекает одинаковый ток;
  • узел — точка в которой присоединяются более двух ветвей.

Исходя из этой терминологии, можно сказать, что ветви, подключаемые к одной паре точек, будут параллельными, а замкнутый путь, проходящий по ним, образует контур. Простейшая электрическая цепь состоит из одноконтурной схемы, сложные же включают несколько контуров.

Часто в условно-графическом обозначении общий провод, то есть проводник, по которому ток возвращается к генератору, обозначают специальным символом. Называют его «минус». Рисуют такое соединение с помощью двух перпендикулярных линий, подключённых к выводу блока. Направление тока на схемах не указывают, но возле некоторых элементов ставят знак плюс или используют другое обозначение положительного вывода.

Отдельно следует отметить схемы замещения. Их используют для удобства, заменяя реальное устройство эквивалентными пассивными радиоэлементами. Такой подход применяют, когда нужно выполнить расчёт параметров полной электросхемы или какой-то её части. Отдельные блоки на схемах очерчивают пунктирными линиями. С их помощью объединяют части цепи по функциональному признаку. Например, разделяют силовую часть от вторичной, логическую от преобразовательной.

Пример реальной цепи

Самую простую электрическую цепь можно сделать самостоятельно. Её часто собирают на уроке физики. При этом не стоит опасаться поражения током, так как в ней будет использоваться низковольтный источник напряжения. Но всё же перед тем как приступить к сборке, следует знать о коротком замыкании. Под ним понимают состояние, при котором происходит закорачивание выхода.

Другими словами, вся энергия источника тока оказывается приложенной к нему же. В результате разность потенциалов снижается до нуля, а в цепи возникает максимальная сила тока. Непреднамеренное короткое замыкание может привести к выходу из строя генератор и радиодетали. Именно для защиты от этого пагубного воздействия в цепи ставят предохранитель.

Схема для самостоятельного повторения будет представлять собой узел управления освещением. Для её сборки необходимо подготовить:

  1. Источник питания на 12 вольт. Это может быть аккумулятор, регулируемый лабораторный блок, батарейки. Главное, чтобы источник смог выдавать нужное напряжение. Например, нужную величину можно получить соединив последовательно несколько батареек со стандартным номиналом 1,5 В (1,5 * 4 = 12 В).
  2. Лампочка. Подойдёт накаливания. Здесь важно обратить внимание на её характеристики. Она должна быть рассчитанной на нужное напряжение.
  3. Ключ. Это обыкновенный выключатель, имеющий два устойчивых состояния — разомкнутое и замкнутое.
  4. Провода. В сборке можно использовать любые медные проводники сечением от 0,25 мм 2 .

Сборка конструкции выполняют следующим образом. К плюсу батарейки подсоединяют провод, подключённый другим концом к выключателю. Затем свободный конец ключа подпаивают к любому из выводов лампы. Другой электрод осветительного устройства подсоединяют к минусу источника. Схема готова. Если теперь перевести ключ в положение «вкл» появится свет.

Электрические цепи для чайников: определения, элементы, обозначения

Эта статья для тех, кто только начинает изучать теорию электрических цепей. Как всегда не будем лезть в дебри формул, но попытаемся объяснить основные понятия и суть вещей, важные для понимания. Итак, добро пожаловать в мир электрических цепей!

Читайте также:
Чем отличается паркет

Хотите больше полезной информации и свежих новостей каждый день? Присоединяйтесь к нам в телеграм.

Электрические цепи

Электрическая цепь – это совокупность устройств, по которым течет электрический ток.

Рассмотрим самую простую электрическую цепь. Из чего она состоит? В ней есть генератор – источник тока, приемник (например, лампочка или электродвигатель), а также система передачи (провода). Чтобы цепь стала именно цепью, а не набором проводов и батареек, ее элементы должны быть соединены между собой проводниками. Ток может течь только по замкнутой цепи. Дадим еще одно определение:

Электрическая цепь – это соединенные между собой источник тока, линии передачи и приемник.

Конечно, источник, приемник и провода – самый простой вариант для элементарной электрической цепи. В реальности в разные цепи входит еще множество элементов и вспомогательного оборудования: резисторы, конденсаторы, рубильники, амперметры, вольтметры, выключатели, контактные соединения, трансформаторы и прочее.

Электрическая цепь

Кстати, о том, что такое трансформатор, читайте в отдельном материале нашего блога.

По какому фундаментальному признаку можно разделить все цепи электрического тока? По тому же, что и ток! Есть цепи постоянного тока, а есть – переменного. В цепи постоянного тока он не меняет своего направления, полярность источника постоянна. Переменный же ток периодически изменяется во времени как по направлению, так и по величине.

Сейчас переменный ток используется повсеместно. О том, что для этого сделал Никола Тесла, читайте в нашей статье.

Элементы электрических цепей

Все элементы электрических цепей можно разделить на активные и пассивные. Активные элементы цепи – это те элементы, которые индуцируют ЭДС. К ним относятся источники тока, аккумуляторы, электродвигатели. Пассивные элементы – соединительные провода и электроприемники.

Приемники и источники тока, с точки зрения топологии цепей, являются двухполюсными элементами (двухполюсниками). Для их работы необходимо два полюса, через которые они передают или принимают электрическую энергию. Устройства, по которым ток идет от источника к приемнику, являются четырехполюсниками. Чтобы передать энергию от одного двухполюсника к другому им необходимо минимум 4 контакта, соответственно для приема и передачи.

Резисторы – элементы электрической цепи, которые обладают сопротивлением. Вообще, все элементы реальных цепей, вплоть до самого маленького соединительного провода, имеют сопротивление. Однако в большинстве случаев этим можно пренебречь и при расчете считать элементы электрической цепи идеальными.

Существуют условные обозначения для изображения элементов цепи на схемах.

Кстати, подробнее про силу тока, напряжение, сопротивление и закон Ома для элементов электрической цепи читайте в отдельной статье.

Вольт-амперная характеристика – фундаментальная характеристика элементов цепи. Это зависимость напряжения на зажимах элемента от тока, который проходит через него. Если вольт-амперная характеристика представляет собой прямую линию, то говорят, что элемент линейный. Цепь, состоящая из линейных элементов – линейная электрическая цепь. Нелинейная электрическая цепь – такая цепь, сопротивление участков которой зависит от значений и направления токов.

Какие есть способы соединения элементов электрической цепи? Какой бы сложной ни была схема, элементы в ней соединены либо последовательно, либо параллельно.

При решении задач и анализе схем используют следующие понятия:

  • Ветвь – такой участок цепи, вдоль которого течет один и тот же ток;
  • Узел – соединение ветвей цепи;
  • Контур – последовательность ветвей, которая образует замкнутый путь. При этом один из узлов является как началом, так и концом пути, а другие узлы встречаются в контуре только один раз.

Чтобы понять, что есть что, взглянем на рисунок:

Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

Классификация электрических цепей

По назначению электрические цепи бывают:

  • Силовые электрические цепи;
  • Электрические цепи управления;
  • Электрические цепи измерения;

Силовые цепи предназначены для передачи и распределения электрической энергии. Именно силовые цепи ведут ток к потребителю.

Читайте также:
Станок токарно-винторезный ТВ 16: устройство и эксплуатация

Также цепи разделяют по силе тока в них. Например, если ток в цепи превышает 5 ампер, то цепь силовая. Когда вы щелкаете чайник, включенный в розетку, Вы замыкаете силовую электрическую цепь.

Электрические цепи управления не являются силовыми и предназначены для приведения в действие или изменения параметров работы электрических устройств и оборудования. Пример цепи управления – аппаратура контроля, управления и сигнализации.

Электрические цепи измерения предназначены для фиксации изменений параметров работы электрического оборудования.

Расчет электрических цепей

Рассчитать цепь – значит найти все токи в ней. Существуют разные методы расчета электрических цепей: законы Кирхгофа, метод контурных токов, метод узловых потенциалов и другие. Рассмотрим применение метода контурных токов на примере конкретной цепи.

Сначала выделим контуры и обозначим ток в них. Направление тока можно выбирать произвольно. В нашем случае – по часовой стрелке. Затем для каждого контура составим уравнения по 2 закону Кирхгофа. Уравнения составляются так: Ток контура умножается на сопротивление контура, к полученному выражению добавляются произведения тока других контуров и общих сопротивлений этих контуров. Для нашей схемы:

Полученная система решается с подставкой исходных данных задачи. Токи в ветвях исходной цепи находим как алгебраическую сумму контурных токов

Какую бы цепь Вам ни понадобилось рассчитать, наши специалисты всегда помогут справится с заданиями. Мы найдем все токи по правилу Кирхгофа и решим любой пример на переходные процессы в электрических цепях. Получайте удовольствие от учебы вместе с нами!

Электрические цепи постоянного тока

В одноконтурной электрической цепи постоянного тока ЭДС Е, направленная внутри источника электрической энергии от отрицательного полюса к положительному, возбуждает ток I того же направления, который определяют по закону Ома для всей цепи:

где R — сопротивление внешней цепи, со стоящей из приемника и соединительных проводов, R вт — сопротивление внутренней цепи, в которую входит источник электрической энергии.

Если сопротивления всех элементов электрической цепи не зависят от значения и направления тока и ЭДС , то их, а также саму цепь, называют линейными .

В одноконтурной линейной электрической цепи постоянного тока с одним источником электрической энергии ток прямо пропорционален ЭДС и обратно пропорционален общему сопротивлению цепи .

Рис. 1. Схема одноконтурной электрической цепи постоянного тока

Из приведенной выше формулы следует, что E – Rвт I = R I , откуда I = (E – P вт I) / R или I = U / R , где U = E — Rвт I является напряжением источника электрической энергии, которое направлено от положительного полюса к отрицательному.

При неизменной ЭДС напряжение зависит только от тока, определяющего падение напряжения Rвт I внутри источника электрической энергии, если сопротивление внутренней цепи Rвт = const.

Выражение I = U / R является законом Ома для участка цепи, к зажимам которого приложено напряжение U, совпадающее по направлению с током I этого же участка.

Зависимость напряжения от тока U ( I ) при Е = const и R вт = const называют внешней, или вольт-амперной характеристикой линейного источника электрической энергии (рис. 2), по которой можно для любого тока I определить соответствующее ему напряжение U, а по приводимым ниже формулам – рассчитать мощность приемника электрической энергии:

P2 = RI 2 = E2R / (R +R вт) 2 ,

мощность источника электрической энергии:

P1 = (R + R вт) I 2 = E 2 / ( R + R вт)

и кпд установки в цепях постоянного тока:

η = P2 / P1 = R / (R + R вт) = 1 / (1 + R вт / R )

Рис. 2. Внешняя (вольт-амперная) характеристика источника электрической энергии

Точка X вольт-амперной характеристики источника электрической энергии отвечает режиму холостого хода (х. х.) при разомкнутой цепи, когда ток I х = 0, а напряжение Ux = Е.

Точка Н определяет номинальный режим, если напряжение и ток соответствуют их номинальным значениям Uном и I ном, приведенным в паспорте источника электрической энергии.

Точка К характеризует режим короткого замыкания (к. з.), возникающий при соединении между собой зажимов источника электрической энергии, при котором внешнее сопротивление R = 0. В этом случае возникает ток короткого замыкания I к = Е / R вт, который во много раз превышает номинальный ток I ном из-за того, что внутреннее сопротивление источника электрической энергии Rвт

Читайте также:
Центробежный насос для воды из скважины: назначение, виды, устройство и цена

Точка С отвечает согласованному режиму, при котором сопротивление внешней цепи R равно сопротивлению внутренней цели R вт источника электрической энергии. В этом режиме возникает ток Ic = E / 2R вт внешней цепи отвечает наибольшая мощность P2max = E2 / 4R вт, а коэффициент полезного действия (кпд) установки ηс = 0,5.

Согласованный режим, при котором:

P2 / P2max = 4R 2 / (R + R вт) 2 = 1 и Ic = E / 2R = I

Рис. 3. Графики зависимостей относительной мощности приемника электрической энергии и кпд установки от относительного сопротивления приемника

В электроэнергетических установках режимы электрических цепей значительно отличаются от согласованного режима и характеризуются токами I обусловливаемыми сопротивлениями приемников R R вт, в результате чего работа таких систем происходит при высоком коэффициенте полезного действия.

Изучение явлений в электрических цепях упрощается при замене их схемами замещения – математическими моделями с идеальными элементами, каждый из которых характеризуется одним и параметров, взятых из параметров наметаемых элементов. Эти схемы полностью отображают свойства электрических цепей и при соблюдении определенных условий облегчают анализ электрического состояния электрических цепей .

В схемах замещения с активными элементами пользуются идеальным источником ЭДС и идеальным источником тока.

Идеальный источник ЭДС характеризуется постоянной ЭДС, Е и внутренним сопротивлением, равным нулю, вследствие чего ток такого источника определяется сопротивлением присоединенных приемников, а короткое замыкание вызывает ток и мощность, теоретически стремящихся к бесконечно большому значению.

Идеальному источнику тока приписывают внутреннее сопротивление, стремящееся к бесконечно большому значению, и неизменный ток I к не зависящий от напряжения на его зажимах, равный току коротного замыкания, вследствие чего неограниченное увеличение присоединенной к источнику нагрузки сопровождается теоретически неограниченным возрастанием напряжения и мощности.

Рис. 4. Схемы замещения электрической цепи с реальным источником электрической энергии и резистором , а — с идеальным источником ЭДС, б – с идеальным источником тока.

Реальные источники электрической энергии работают в режимах, близких к режиму идеальных источников ЭДС , если сопротивление приемников велико по сравнению с внутренним сопротивлением реальных источников, т. е. когда они находятся в режимах, близких к режиму холостого хода.

В случаях, когда рабочие режимы близки к режиму короткого замыкания, реальные источники приближаются к идеальным источникам тока, поскольку сопротивление приемников мало по сравнению с внутренним сопротивлением реальных источников.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Электрические цепи постоянного тока. Электрические цепи и ее элементы

Электрические цепи и ее элементы

Электрической цепью постоянного тока называют совокупность устройств и объектов: источников электрической энергии, преобразователей, потребителей, коммутационной, защитной и измерительной аппаратуры, соединительных проводов или линии электропередачи.

Электрические и электромагнитные процессы в этих объектах описываются с помощью понятий об электродвижущей силе (ЭДС – E), токе (I) и напряжении (U).

Элементы цепи можно разделить на три группы:

1) элементы, предназначенные для генерирования электроэнергии (источники энергии, источники ЭДС);

2) элементы, преобразующие электроэнергию в другие виды энергии: механическую, тепловую, световую, химическую и т.д. (эти элементы называются приемниками электрической энергии или потребителями);

3) элементы, предназначенные для передачи электрической энергии от источника к приемникам (линии электропередачи, соединительные провода); элементы, обеспечивающие уровень и качество напряжения и т.д.

Источники питания цепи постоянного тока – это гальванические элементы, электрические аккумуляторы, электромеханические генераторы, термо- и фотоэлементы и др.

Электрическими приемниками или потребителями постоянного тока являются электродвигатели, преобразующие электрическую энергию в механическую, нагревательные и осветительные приборы, электролизные установки и др. Все электоприемники характеризуются электрическими параметрами, среди которых основные – напряжение и мощность. Для нормальной работы электроприемника на его зажимах необходимо поддерживать номинальное напряжение. По ГОСТ 721-77 напряжение равно 27, 110, 220, 440 В, так же 6, 12, 24, 36 В.

Читайте также:
Технология строительства гаража из бруса своими руками

Коммутационная аппаратура служит для подключения потребителей к источникам, то есть для замыкания и размыкания источников электроцепи.

Защитная аппаратура предназначена для размыкания цепи в аварийных ситуациях.

Измерительная аппаратура предназначена для замера тока, напряжения и других электрических величин.

Линии электропередачи используются, когда источники и потребители удалены друг от друга на большие расстояния. Соединительные провода предназначены для соединения между собой зажимов или электродов элементов электрической цепи.

Активные и пассивные элементы

Элемент называется пассивным, если он не может вызывать протекание тока, то есть если он не создает тока или ЭДС. Если собрать несколько пассивных элементов (резисторы, конденсаторы, катушки индуктивности) в электрическую цепь, то ток в цепи не потечет.

Элемент, который создает ЭДС и вызывает протекание тока, называется активным (источники электроэнергии).

Линейные и нелинейные цепи

Электрическая цепь называется линейной, если электрическое сопротивление или другие параметры участков, не зависят от значений и направлений токов и напряжений. Электрические процессы линейной цепи описываются линейными алгебраическими и дифференциальными уравнениями.

Если электрическая цепь содержит хотя бы один нелинейный элемент, то она является нелинейной.

Топологические элементы электрической цепи.

Графическое изображение электрической цепи называется электрической схемой. Электрическая схема включает: узлы, ветви, контуры.

Ветвь – совокупность элементов, соединенных последовательно. По ветви протекает один и тот же ток.

Узел – точка соединения трех или более ветвей.

Контур – совокупность ветвей, при обходе которых осуществляется замкнутый путь.

Простейшая электроцепь имеет один контур с одной ветвью и не имеет узлов. Сложные электроцепи имеют несколько контуров.

Положительные направления тока, напряжения и ЭДС.

Чтобы правильно записать уравнения, описывающие процессы в электрических цепях, и произвести анализ этих процессов, необходимо задать условные положительные направления ЭДС источников питания, тока в элементах или ветвях цепи и напряжения на зажимах элементов цепи или между узлами цепи.

Внутри источника ЭДС постоянного тока положительным является направление ЭДС от отрицательного полюса к положительному полюсу. Это соответствует определению ЭДС как величины, характеризующей способность сторонних сил вызывать электрический ток.

По отношению к источнику ЭДС все элементы цепи составляют внешний участок цепи.

За положительное направление тока в цепи принимают направление, совпадающее с направлением ЭДС. Во внешней цепи положительным является направление от положительного полюса источника к отрицательному полюсу. В электронной теории – направление совпадает с направлением положительно заряженных частиц.

Условным положительным направлением падения напряжения (или просто напряжения) на элементах цепи или между двумя узлами цепи принимают направление, совпадающее с условно положительным направлением тока в этом элементе или в этой ветви. Положительное направление напряжения на зажимах источника ЭДС всегда противоположно положительному направлению ЭДС.

Действительные направления электрических величин, определяемые расчетом, могут совпадать или не совпадать с условными направлениями. При расчетах если определено, что ток, ЭДС и напряжения положительны, то их действительные направления совпадают с условно принятыми положительными направлениями, если отрицательны, то не совпадают.

Основные законы электрической цепи

Условное обозначение параметров в цепях постоянного и переменного тока.

i – переменный ток; I – постоянный ток;

u – переменное напряжение; U – постоянное напряжение;

e – переменная ЭДС; E – постоянная ЭДС;

Напряжение U на зажимах потребителя прямо пропорционально сопротивлению R и току I , проходящему через него

; ;

Но выражение не является следствием закона Ома, так как сопротивление R=const и не зависит от тока и напряжения, протекающего через сопротивление.

Если ввести понятие проводимость G,то , .

Размерность сопротивления R – Ом (Ом), проводимости G – сименс (См).

Первый закон Кирхгофа

Алгебраическая сумма токов сходящихся в узле равно нулю.

,

где n – число ветвей, сходящихся в узле.

До написания уравнения необходимо задать условные положительные направления токов в ветвях, обозначив эти направления на схеме стрелками. Токи, направленные к узлу, записываются со знаком плюс, а токи, направленные от узла, со знаком минус.

Читайте также:
Такой близкий русский стиль в интерьере

Например: I1=5 A

Иначе первый закон Кирхгофа может быть сформулирован: сумма токов, втекающих в узел, равна сумме токов, вытекающих из узла:

Второй закон Кирхгофа

Отражает физическое положение, состоящее в том, что изменение потенциала во всех элементах контура в сумме равно нулю.

Алгебраическая сумма ЭДС в любом контуре электрической цепи постоянного тока равна алгебраической сумме падений напряжений на всех сопротивлениях, входящих в этот контур.

,

где n – число ЭДС в контуре; m – число сопротивлений в контуре.

При составлении уравнений по второму закону Кирхгофа предварительно задают условные положительные направления токов во всех ветвях электрической цепи и для каждого контура выбирают направление обхода. Если при этом направление ЭДС совпадает с направлением обхода контура, то такую ЭДС берут со знаком плюс, если не совпадает – со знаком минус. Падение напряжения со знаком плюс, если положительное направление тока в данном элементе цепи совпадает с положительным направление обхода контура, а со знаком минус, если такого совпадения нет.

Иная формулировка второго закона Кирхгофа – сумма падений напряжений на всех элементах контура, включая источник ЭДС, равна нулю:

Если в ветви имеется n последовательно соединенных элементов с сопротивлением Rk, то

.

То есть падение напряжения на участке цепи или напряжение между зажимами ветви, состоящей из последовательно соединенных элементов, равно сумме падений напряжений на этих элемента.

Режимы работы электрической цепи

Элементами цепи являются конкретные электрические устройства, которые могут работать в различных режимах. Режимы работы как отдельных элементов, так и всей цепи характеризуются значениями тока и напряжения, следовательно, таких режимов может быть множество.

Идеальные и реальные источники ЭДС и тока

Идеальным называется источник ЭДС, напряжение, на зажимах которого не зависит от тока протекающего через него. Внутреннее сопротивление такого источника (R=0) равно нулю. Во всех практических случаях реальные источники ЭДС (или источники питания) не являются идеальными, так как обладают внутренним сопротивлением ( ).

Пусть источник характеризуется постоянными ЭДС ( E=const) и внутренним сопротивлением (R=const). По второму закону Кирхгофа можно записать:

,

где RI=U – напряжение на зажимах внешней цепи; RI – падение напряжения внутри источника ЭДС. Одновременно напряжение U является напряжением на зажимах источника, следовательно:

Это уравнение, описывающее напряжение во внешней цепи от тока в ней (U=f(I)), является уравнением внешней характеристики источника ЭДС. Это уравнение является линейным.

Различают следующие режимы: режим холостого хода, режим короткого замыкания и номинальный режим.

Режим холостого хода – это режим, при котором ток в цепи равен нулю I=0, что имеет место при разрыве цепи. В режиме холостого хода U=E. Вольтметр при этом измеряет ЭДС источника.

Режим короткого замыкания – это режим, когда сопротивление приемника равно нулю:

, , , при .

Номинальный режим – расчетный режим, при котором потребитель работает в условиях указанных в паспорте. Номинальные значения тока напряжения и мощности соответствуют выгодным условиям работы устройства с точки зрения экономичности, надежности, долговечности и т.д.

Ток короткого замыкания может достигать больших величин, во много раз превышая номинальный ток. Поэтому режим короткого замыкания для большинства электроустановок является аварийным режимом.

Согласованный режим источника ЭДС и внешней цепи имеет место, когда сопротивление внешней цепи равно внутреннему сопротивлению источника (R=R0). В этом случае

E=2RIc, .

Идеальный источник тока – тот источник, у которого создаваемый ток не зависит от напряжения на его зажимах, то есть его внутреннее сопротивление или его внутренняя проводимость . У реального источника проводимость не равна нулю . Расчет такой цепи ведется с учетом внутренней проводимости источника тока: I=I-GU, I=f(U).

Электрическая цепь, схема простой электрической цепи постоянного тока.

На картинке нарисована простейшая электрическая цепь постоянного тока. Она состоит из таких элементов как источник питания в виде батарейки, выключатель питания, переменное сопротивление и лампочка (представляющая собой электрическую нагрузку). Неотъемлемыми частями любой электрической схемы являются сам источник питания (постоянного тока или же переменного, без которого любая электросхема всего лишь груда металла), непосредственно нагрузка (ради которой всё и замышлялось, это электродвигатели, лампочки, нагревательные элементы и т.д.), ну и коммутирующие устройства в виде различных выключателей и переключателей (надо же схемой управлять, хотя бы на уровне включить и выключить).

Читайте также:
Узкий комод поможет сэкономить пространство в небольшом помещении

В нашем случае электрическая схема цепи именно постоянного тока. В чём её специфика и отличия от электроцепи переменного тока? Из самого названия должно быть ясно, что в постоянном токе есть какое-то постоянство! Оно заключается в том, что носители электрического тока (электроны, электрические отрицательно заряженные частицы) движуться строго в одном направлении от минуса к плюсу. Да, стоит ещё внести уточнение. В реальности электричество движется от минуса к плюсу (в твёрдых телах, движение электронов), и от плюса к минусу (в жидких и газообразных веществах, движение ионов).

Электрическая цепь постоянного тока питается от источника с постоянным током, у которого есть положительный вывод (он же плюс) и отрицательный вывод (он же минус). Внутри источника постоянного тока не может, при нормальных условиях, меняться полюса, исключено самим принципом его работы и устройством. В электротехнике и особенно в электронике существует множество функциональных элементов работающие именно на постоянном токе. При подаче на них переменного тока (если не предусмотрено самой схемой) элементы либо просто не работают, либо просто выходят из строя. Это происходит потому, что переменный ток периодически меняет свою полярность с плюса на минус и обратно (в обычной городской сети это происходит 50 раз за секунду).

Как уже было подмечено вначале, самая простая электрическая цепь (будь то переменная или постоянная) состоит из источника питания, нагрузки и устройства коммутации (переключатели). В такой схеме электрической цепи энергия вырабатывается источником, и подаётся на нагрузку, выполняющую конкретную полезную работу. Естественно, без выключателей проблематично будет управлять работой электросхемы. Любая электрическая схема подразумевает функцию включения и выключения. Нарисованный на схеме (наш рисунок схемы простой электрической цепи постоянного тока) дополнительное переменное сопротивление показывает, что имеется некий элемент, способный изменять свое электрическое сопротивление, тем самым влияя на величину тока в электрической цепи.

На рисунке схемы электрической цепи постоянного тока можно заметить, что движение тока направлено от плюса к минусу (обозначено стрелками), а выше было сказано, что в реальности ток движется от минуса к плюсу (в твёрдых телах). Что это за несоответствие? Просто было наукой принято, что в схема должно обозначаться именно такое движение электрического тока. Но это особо не на что не влияет. Просто зная условные обозначения на электрических схемах и физический принцип действия электрического тока мы работаем со схемой, сочиняя её, либо используя при ремонте или сборке. В электронике на схемах можно заметить стрелки, находящиеся на самих функциональных элементах. Они показывают направление движения тока, как было принято в условном обозначении.

В более сложных электрических цепях в схемах добавляются дополнительные устройства и элементы, которые расширяют общий функционал. Каждая деталь, элемент при подаче на него напряжения или прохождении электрического тока имеет свою специфическую особенность. Хотя в целом, что можно сделать с электроэнергией источника питания? Изменить всего лишь исходные характеристики, а именно, увеличить или понизить напряжение, ток, частоту (если это переменный или импульсный ток). Включить или выключить схему электрической цепи.

Видео по этой теме:

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: