УШП – фундамент с теплым полом Rehau для дома и дачи

Утепленная шведская плита: технология строительства

Первым этапом строительства дома является закладка фундамента. При этом главными требованиями, предъявляемыми к основанию, считаются эффективность, надежность и минимальные затраты. Появление на строительном рынке инновационных материалов и технологий позволяет добиваться высоких результатов при решении этого вопроса. Высокими качественными характеристиками обладает УШП фундамент, или, проще говоря, утепленная шведская плита.

  • Фундамент УШП для дома и дачи
  • Преимущества шведской утепленной плиты
  • Суть технологии и схема устройства
  • Фундамент УШП: пошаговое выполнение
  • Разметка участка
  • Земляные работы
  • Обустройство дренажной системы
  • Прокладка коммуникаций
  • Укладка утеплителя
  • Выбор теплоизоляционного материала
  • Армирование и установка теплого пола
  • Правила укладки труб теплого пола
  • Монтаж опалубочной системы
  • Заливка бетонной массы

Фундамент УШП для дома и дачи

Утепленная шведская плита для дома

При строительстве малоэтажных зданий фундамент УШП имеет большое значение, так как в нем сочетается минимальный бюджет и качество проживания. По сути, такая технология представляет обычную утепленную плиту основания. Залить фундамент можно без привлечения спецтехники с минимальными трудозатратами. Благодаря современным технологиям и качественным строительным материалам внутри конструкции можно уложить все коммуникационные системы. Эти качества делают технологию особенно выгодной при строительстве дачи или другой конструкции малой этажности.

Преимущества шведской утепленной плиты

Фундамент, выполненный по технологии утепленной шведской плиты, имеет множество преимуществ перед остальными видами основания:

  • Почва под утепленной монолитной плитой не промерзает и не вспучивается, поэтому строительство возможно на любом типе грунта.
  • Коммуникационные системы уложены непосредственно в основание, что исключает возможность из промерзания.
  • Ровная поверхность фундамента позволяет выполнять укладку напольного покрытия без дополнительной отделки.
  • Монтаж за короткий промежуток времени. Отсутствие надобности в дополнительных стяжках сокращает срок возведения фундамента до 7 дней.
  • Благодаря качественному утеплению фундамента сокращаются расходы на отопление.
  • Возможность выполнения всего процесса своими руками без привлечения специальной строительной техники.

к оглавлению ↑

Суть технологии и схема устройства

Технология обустройства УШП подразумевает создание многослойной структуры основания при его мелком заглублении. Ровное бетонное основание может служить черновым полом. Качественная теплоизоляция перед заливкой бетонного слоя дает возможность получить высокие теплоизоляционные характеристики. Возможность обустройства коммуникационных систем непосредственно в фундаменте также дает свои плюсы. Кроме того УШП предотвращает промерзание и движение почвы под домом.

Как уже говорилось, утепленная шведская плита – это многослойная технология, в которой должен соблюдаться определенный порядок укладки слоев:

  1. Первоначально участок засыпают слоем песка крупной фракции.
  2. Затем укладывается геологический текстиль.
  3. Обустраивается дренажная система для отвода воды из-под основания.
  4. Засыпается еще один слой песка.
  5. Укладывается утеплитель по периметру строения и под отмостку.
  6. Затем утеплителем застилается все основание.
  7. Выполняется армирование.
  8. Заливается слой бетонного раствора.

к оглавлению ↑

Фундамент УШП: пошаговое выполнение

Порядок строительства УШП

Одним из преимуществ обустройства фундамента по шведской технологии является возможность самостоятельного выполнения всех работ. Главный недостаток – отсутствие возможности ремонта проведенных коммуникаций. Следовательно, в процессе закладки фундамента должна соблюдаться строгая очередность слоев, а каждый шаг должен быть обдуманным.

Разметка участка

На этом этапе проект дома переносится на местность. Отмечаются границы основания и планируются пути подвода коммуникационных систем. Чтобы не допустить подступ воды к контурам фундамента, в это же время прокладывают ливневую канализацию.

Земляные работы

Для обустройства фундамента по технологии утепленной шведской плиты не нужна глубокая яма, достаточно вырыть котлован на 40-50 см. Самое главное – снять весь плодородный слой, чтобы грунт с растительностью не притягивал влагу и не создавал условия для появления плесневелого грибка. Для работы можно нанять специальную технику, но, учитывая небольшую глубину, дешевле будет выполнить работу вручную.

Котлован для УШП

Дно подготовленного котлована рекомендуется обработать химикатами, чтобы остановить дальнейший рост растительности.

Затем обустраивается песчаная подушка. Для этого насыпают слой песка, смачивают его водой и тщательно утрамбовывают.

Границы котлована должны располагаться от периметра основания на расстоянии не меньше 1 метра. Здесь будет обустраиваться дренажная система. Для нее выбирают грунт, создавая траншеи для укладки дренажных труб. Дно траншей утрамбовывают глиной. Для этого насыпают ровный слой материала, увлажняют его и тщательно утрамбовывают.

Обустройство дренажной системы

Котлован застилают геологическим текстилем, при этом материал обязательно заводится на стены. Затем насыпают слой мелкого щебня, уплотняя его в траншеях. Поверх щебня укладывают дренажные трубы и снова насыпают щебень. Вся поверхность вновь застилается геотекстилем. Стоит отметить, что защита утепленной шведской плиты имеет огромное значение.

Прокладка коммуникаций

Коммуникационные работы на УШП

Разводка коммуникационных систем, включая водопровод и канализацию, должна обозначаться заранее, так как они укладываются непосредственно в монолит. При этом важно выполнить дублирование контуров, чтобы при непредвиденной ситуации подача и отвод воды не прекращались. Уложенные трубы водопроводной и канализационной системы засыпают слоем песка, который необходимо тщательно утрамбовать. Лучше всего выполнить этот процесс с помощью виброплиты.

Укладка утеплителя

Утепление основания является очень важным моментом, так как именно этот слой препятствует выходу тепла из дома в грунт и предотвращает проникновение холода из почвы в помещение. Укладывать утеплитель рекомендуется в два ряда: первый ряд охватывает периметр основания и отмостку, второй – укладывается со смещением от края на 45 см, создавая ребра жесткости. При укладке плоских листов утеплителя для крепления используют специальные пластиковые гвозди с широкими шляпками.

Плиты утеплителя нужно располагать в шахматном порядке, так как совмещенные стыки могут стать своеобразными мостиками холода.

Можно воспользоваться L-образными элементами, которые благодаря конструктивным особенностям могут укладываться без дополнительного крепления.

Читайте также:
Строительство бетонных лестниц

Выбор теплоизоляционного материала

Качественный утеплитель поможет избежать проблем с фундаментом. Поддержать нормальный температурный режим в помещении можно с помощью материала с низкой теплопроводностью.

Рынок строительных материалов представляет огромное количество утеплителей. Но для утепленной шведской плиты лучше использовать экструдированный пенополистирол «Пеноплекс». Этот материал обладает некоторыми преимуществами:

Выбор материалов для утепления

  • Долговечный.
  • Препятствует размножению микроорганизмов.
  • Экологически безопасный.
  • Устойчив к воздействию повышенной влажности.

к оглавлению ↑

Армирование и установка теплого пола

Армирующая сетка также укладывается в два слоя. Вначале укладывают первую сетку, на которой монтируется система теплого пола, затем идет второй армирующий слой. Важно помнить, что прутья арматуры в этом случае не рекомендуется соединять с помощью сварки, так как в результате нагревания может наблюдаться потеря жесткости. Лучшим вариантом соединения прутков считается вязка мягкой проволокой.

Установка теплого пола выполняется на специальные подставки, выполненные из высококачественного пластика. При монтаже системы важно учитывать будущую планировку дома, включая расположение мебели в комнатах, чтобы избежать лишних затрат на электроэнергию.

Правила укладки труб теплого пола

Чтобы избежать неприятных моментов при эксплуатации теплого пола, следует придерживаться определенных правил:

  • Для достижения большей тепловой мощности трубы следует укладывать более плотно. Следовательно, у стен трубы должны лежать более плотно, чем в середине комнаты.
  • Минимальное расстояние между трубами – 10 см, более плотная укладка приведет к перерасходу трубы, а эффект останется таким же.
  • Не стоит делать расстояние между трубами более 25 см, чтобы температура равномерно распределялась по поверхности.
  • При укладке теплого пола отступ от наружных стен должен быть не мене 15 см.

Соблюдение этих простых правил обеспечит комфортные условия внутри помещения.

Монтаж опалубочной системы

Монтаж опалубки для УШП

Опалубка предназначена для удержания бетонной массы. Возможно использование классического варианта из фанерных щитов или досок и соответствующих подпорок. Внутренняя часть опалубки выстилается полистиролом для получения ровной и гладкой поверхности. Так как исключается контакт опалубочной конструкции с бетонным раствором, используемый материал можно использовать при дальнейшем строительстве.

Заливка бетонной массы

На завершающем этапе всю конструкцию заливают бетонным раствором. При этом процесс должен быть одноразовым, порционная заливка должна выполняться с промежутком не более 1 часа. Нельзя забывать об уплотнении раствора, для чего желательно воспользоваться виброплитой. Чтобы добиться ровной поверхности, готовое монолитное основание шлифуют. Через сутки можно снимать опалубочную систему.

В процессе застывания бетона важно обеспечить надлежащий уход за фундаментом. Для этого в жаркое время проводят увлажнение поверхности и закрывают полиэтиленовой пленкой, защищая от осадков.

Технология утепленной шведской плиты для возведения фундамента позволяет сократить сроки, отведенные на строительство. Кроме того существует реальная возможность сэкономить на отоплении, благодаря высоким энергосберегающим характеристикам основания такого типа.

Конструкция УШП утепленной шведской плиты

В статье разберем конструкцию УШП утепленной шведской плиты. Этапы строительства и основные моменты по устройству такого фундамента.

УШП (утепленная шведская плита) — вид фундамента, малозаглубленный, качественно теплоизолирован от земли и содержит в себе все необходимые коммуникации такие как теплый пол, что обеспечивает высокоэффективное отопление. Также в толщу монолита уже вмонтирована система канализации и ввод воды в дом.

«У кого хороший фундамент, тому крышу не сносит.» (Валерий Филатов)

  1. Подготовленного основания (как правило материковая глина) с небольшим уклоном от центра в каждую сторону (примерно 1%).
  2. Дренажной системы для отвода дождевых и талых вод по периметру будущей отмостки.
  3. Непосредственно самой отмостки (с утеплением).
  4. Теплоизоляционного слоя (уложенного по периметру и основания из ППС.
  5. Армирующего каркаса (несущих балок и армированного основания).
  6. Инженерных коммуникация (контуров теплого пола, выводов под радиаторы, канализации, заход воды, электрический ввод).
  7. Бетонного основания.

Достоинства и недостатки конструкции УШП.

Достоинства конструкции фундамента по типу утепленной шведской плиты:

  1. Утепленное основание и отмостка препятствуют промерзанию грунта и как следствие пучению.
  2. Хорошая теплоизоляция и встроенная система теплых полов в конструкции позволяет достичь хорошей экономии на отоплении.
  3. Плита является отличным тепло аккумулятором, который позволит пережить отключение электричества (здесь имеется ввиду электричество не как энергоноситель, а как питание всех насосов) даже на несколько дней.
  4. Плита является черновым полом, на которое возможна непосредственная укладка чистовых материалов без предварительной подготовки.
  5. Утепление и гидроизоляция плиты исключает образование влаги и плесени в доме.
  6. Отсутствует необходимость дополнительной стяжки пола (все коммуникации заложены в плиту).
  7. Позволяет возводить дома на участках с высоким уровнем грунтовых вод и практически на всех грунтах.
  8. Монолитный фундамент (плита) обладает низким коэффициентом усадки.

Но, как и всё, что есть на свете — конструкция утепленной шведской плиты не лишена и недостатков:

  1. Необходим тщательный проект возводимого здания (дома) т.к. коммуникации прокладывают непосредственно в самом начале строительства, и последующая перепланировка становится практически невозможной.
  2. Нельзя организовать подвальное помещение внутри дома. Может быть оно и к лучшему. Сделайте его в соседнем гараже.
  3. Такой тип фундамента рассчитан на малоэтажное строительство для частных домов, а также для быстровозводимых конструкций из сэндвич-панелей, гаражей и пр. хоз. построек.
  4. Невозможно построить высокий цоколь.

Этапы возведения конструкции утепленной шведской плиты УШП:

  1. Подготовка основания материка (работа экскаватора);
  2. Формирование отводных дренажных каналов;
  3. Монтаж заземления;
  4. Монтаж дренажной системы;
  5. Подготовка основания под плиту (песчаная подушка);
  6. Установка опалубки;
  7. Монтаж канализационных труб, входа воды;
  8. Укладка утеплителя под плиту;
  9. Монтаж труб теплого пола;
  10. Армирование основания плиты;
  11. Заливка бетона;
  12. Затирка бетона.
Читайте также:
Современный декор для кухни: идеи и примеры на 70 красивых фото

Первое что необходимо сделать при начале укладки фундамента — это запроектировать будущий дом и произвести расчёт фундамента. Его несущие свойства, толщину несущих балок, армирование, места размещения смотровых колодцев для отвода воды и пр.

Также при подготовке необходимо завести на участок песок, щебень. Оплачивать стоимость работы экскаватора за простой накладно.

Подготовка основания материка под конструкцию УШП утепленной шведской плиты.

При подготовке к данному этапу необходимо разметить участок и обозначить границы дома. От границ дома прибавить в каждую сторону дополнительно расстояние, которое потребуется под отмостку и дренажную систему отвода воды. Примерно около 2-х метров в каждую сторону.

По выставленным маякам начинает работать экскаватор. На данном этапе важно извлечь весь плодородный слой почвы. В нем содержится много органических элементов. Он со временем будет перегнивать, что даст усадку. Плюс ко всему плодородный слой является «домом» для различных насекомых, червей, грызунов и пр. В общем убираем его и выравниваем им участок если это требуется — нет вывозим или продаем.

Дойдя до слоя глины важно сформировать небольшой уклон от центра к периметру границ с уклоном около 1% (1 см на метр). При такой разуклонке воды будут стекать по материковому слою глины в дренажную систему.

После работы экскаватора необходимо уплотнить дополнительно основание при помощи тяжелой виброплиты (не менее 200 кг) в 4-5 проходов.

Формирование отводных дренажных каналов;

После того как основание освобождено от плодородной почвы по периметру котлована необходимо вырыть дренажные каналы. Каналы также формируем с разуклонкой 1-2% к смотровым колодцам как запроектировано.

Монтаж системы заземления;

На этапе монтажа необязательно, но желательно позаботится об этом. Пока существует котлован, нужно вбить контур заземления примерно под отмосткой, сделать вывод к основанию плиты. Позже не придется возвращаться к этому вопросу. Вывод лучше предусмотреть со сторону где пойдет электрический ввод кабельной линии. Для чего необходимо будет оставить закладную в бетоне под ввод.

Монтаж дренажа;

В заранее подготовленные каналы укладываем геотекстилем и кладем дренажную трубу. В углах устанавливаем смотровые колодцы. Засыпаем все это щебнем. Закрываем геотекстилем.

Делаем песчаную подушку под УШП;

Необходимо сформировать деформационную подушку из песка или песчано-гравийной смеси. Песок также необходимо укладывать слоями по 150-200 мм и обязательно уплотнять тяжелой виброплитой в 4-5 проходов. Контролируем уровень засыпки и выравниваем в «0».

Важно! Песок должен быть влажный и без органических примесей.

Установка опалубки;

Еще раз размечаем углы дома, проверяем диагонали. На подготовленную подушку укладываем плотный полиэтилен или другую гидроизоляцию. Устанавливаем опалубку по периметру. Верх опалубки проверяем по уровню. Далее будет проще заливать бетон. Опалубку делаем очень качественно и закрепляем распорками почаще. Лучше потратить день на укрепление чем потом переделывать, когда бетон разопрет её.

Монтаж труб канализации.

Да трубы канализации лучше всего устанавливать после опалубки. С привязкой к её стенкам и углам. Где необходимо проложить Канализационные трубы и трубы для ввода воды делается углубление в песчаной подушке с уклоном 1 – 2% и укладываем выходы канализации закрывая их заглушками. Здесь очень важно сделать всё по размерам, указанным в чертежах. Иначе придется потом устанавливать унитаз посередине комнаты))).

Неплохо предусмотреть установку трапов если в этом есть необходимость.

Трубы засыпаем песком и трамбуем легкой плитой (60-80 кг).

Укладка утеплителя;

В углы опалубки лучше всего поставить так называемый L – профиль из ППС. Тогда удастся избежать дополнительных мостиков холода на стыках. Заполняем первый слой ППС толщиной 100 мм. Внахлест делаем второй слой. Формируя таким образом пустоты для несущих балок фундамента. Эти балки должны располагаться по периметру и там, где будут располагаться несущие стены. Их размер обычно составляет 300х400 мм.

В дальнейшем они будут служить ориентиром где не требуется прокладывать контуры теплого пола.

Плиты ППС между собой лучше проклеивать специальным клеем или монтажной пеной.

После формирования основания из ППС необходимо связать армирующий пояс.

Армирование несущих балок;

Для армирования несущих балок лучше всего подойдет 12 мм арматура. При подготовке необходимо согнуть сразу большое количество скоб (из 8 мм арматуры) по размеру около 230х330 мм из расчета 1 шт. на каждые 300 мм. Также лучше всего сделать готовые углы и связать их еще на козлах, а потом опустить в опалубку и приподнять от основания на 30 мм, чтобы бетон заполнил полость под арматурой. Далее углы необходимо связать между собой при помощи длинных прутов. Перехлест делаем не менее 500 мм и в разбежку. Арматуру необходимо вязать с помощью проволоки, а не сваркой. К тому же сварочный шлак будет прожигать ППС. Количество арматуры от 6 до 8 прутов.

Монтаж труб теплого пола;

Когда армопояс связан необходимо уложить трубу теплого пола в конструкцию утепленной шведской плиты. Некоторые кладут армирующую сварную сетку 15х15 и на неё с помощью нейлоновых стяжек крепят трубу. Но лучше всего использовать пистолет для теплого пола, который будет крепить трубу с помощью гарпун-скоб и т.о. крепить трубу к ППС. Труба держится очень прочно. И по затратам, и по скорости удобнее получается.

Читайте также:
Устройство и монтаж батарей отопления в полу, ,радиаторов, конвекторов

Трубу необходимо укладывать по контурам. Не нужно делать одинаковые контуры (как говорят некоторые, для якобы лучшей балансировки). Нужно правильно распределять контуры. Одна комната один контур. Если комната большая, то два примерно одинаковых контура. При таком раскладе можно установить систему управления климат-контролем. И задавать температуру в зависимости от суток (например) в разных комнатах. Сделать хорошую балансировку можно и с разными по длине контурами. Для этого следует приобрести коллектора с расходомерами.

Длина трубы в контуре должна быть до 100 м.п. площадь при шаге 150 мм получается около 15 м.кв. Лучший способ укладки трубы — улитка. Так более равномерно будет распределяться тепло. Об этом можно почитать здесь.

Если деньги позволяют сразу приобрести коллекторы, то прессуем трубы и заливаем их под давлением. Нет — льём надеясь, что никто не пробил их))).

При опресовке труб из сшитого полиэтилена помним, что трубы очень сильно тянутся и поэтому давление стабилизируется только через несколько часов. Все это время подкачиваем давление, оно будет постоянно падать. Накачиваем, закрываем краны, следим за манометрами.

Трубу следует выбрать из сшитого полиэтилена. Лучшим решение будет конечно же рехау (здесь все о разновидности труб rehau). Или использовать аналог (здесь все об аналогах трубы rehau).

Армирование основания плиты;

Труба ТП уложена. Нужно армировать основание. Для этого с шагом 150х150 или 200х200 (от проекта) на стойки укладывается арматура диаметром 10 мм. Связывается между собой и армирующим поясом. Обычно в один слой этого достаточно.

Готовимся к заливке бетона;

Если у нас большой дом и необходимо залить много кубиков бетона, то бетононасос в помощь.

Необходимо учитывать, что около 1 куб. м. уйдет в утиль (для основания беседки или еще куда). И плюс необходимо заказать с запасом лучше приготовить место куда слить остаток, чем доливать 1 куб. м. когда он застынет.

Также при заливке необходимо запастись глубинным вибратором и виброрейкой. Не помешает и затирочная машина (вертолет). Когда начнут лить бетон будет поздно искать это все в аренду.

Затирка бетона;

Можно конечно и не затирать бетон, но тогда придется потратится на наливной пол больше чем хотелось. Но даже если плита затерта лучше всего налить сверху 10 мм наливного пола. Будет удобнее стелить напольное покрытие.

Заливаем, ровняем, воздух выгоняем (без фанатизма). Когда бетон схватится до состояния можно наступить в «бетоноступах». Пора затирать. Иначе будет поздно.

Затерли можно и по сто грамм))). Дальше больше.

И да — необходимо следить и «ухаживать» за только что залитым бетоном. Нельзя допускать, чтобы он замерз или пересох. Два – три дня бдим пока не созреет.

Конструкция утепленной шведской плиты готова.

Осталось немного: отмостка, стройка, отделка, благоустройство и новоселье!

Стоимость материалов для дома 10х13 м. Удаленность от города 30 км.

Как читать принципиальные схемы и радиодетали (УГО)

Особенности чтения схем

В принципиальных схемах проводники (или дорожки) обозначаются линиями.


Так обозначаются проводники, которые пересекаются, но они не имеют общего соединения и электрически друг с другом не связаны.

Общая точка

Часто у начинающих радиолюбителей возникает вопрос — что это за символ на схеме?

Это общая точка (GND, земля). Раньше ее называли общим проводом. Так обозначается единый провод питания. Обычно это минус питания. Раньше на схемах могли сделать общим проводом и плюс питания. В данном случае схема без общей точки выглядела бы вот так:
Общая точка с однополярным питанием визуально лучше и компактнее выглядит, чем если просто сделать единую линию между ними.

Еще общей точкой ее называют потому, что относительно нее можно измерять любые остальные точки на схемах. Например, ставите щуп мультиметра на общую точку, а вторым щупом можете проверить любую часть цепи на схеме.

Почему она может называться землей (GND)? Раньше в качестве общего провода могло использоваться шасси корпуса прибора. Из-за этого возникла путаница между заземлением и землей. Оно интерпретируется в контексте схемы. Та схема, что была разобрана выше — общая точка (земля) это просто минус питания. Другое дело это двуполярные источники тока и заземление.

Двуполярное питание и общая точка

В двуполярном питании общая точка — это средний контакт между плюсом и минусом.

Заземление

Примером заземления может послужить фильтр в компьютерных блоках питания.

С конденсаторного фильтра помехи идут на корпус блока питания. Это и есть заземление. А с блока питания они должны уходить в розетку, если у вас есть заземление, иначе сам корпус блока питания может быть под напряжением. Токи там не большие, они не опасны для жизни. Это делается с целью уменьшения импульсных помех в блоке питания и безопасности.

Иногда в блоках питания вместо корпуса помехи с конденсатора идут на общую точку. Это все зависит от конструкции и схемотехники. В этом случае помех будет больше, чем с заземлением.

А вообще, на схемах есть разные заземления. Например, в цифровой технике разделяют аналоговую землю и цифровую. чтобы не нарушать режимы работы схемы. Импульсные помехи могут повлиять на аналоговую часть схемы.

Читайте также:
Хоста «Белое перо» (38 фото): посадка и уход, описание гибридного сорта. Почему плохо растет?

Номиналы радиодеталей

Вообще, в этом плане есть разногласия. Согласно ГОСТУ на текущий момент, номиналы деталей на принципиальных схемах не указывается. Это сделано ради того, чтобы не нагромождать схему информацией.

К принципиальной схеме прилагается список деталей, монтажная и структурные схемы, а также печатная плата.

Есть еще один общепринятый стандарт. На схемах указываются номиналы некоторых деталей и их рабочие напряжения.

Рассмотрим на схеме два конденсатора.

В данном случае C5 это неполярный конденсатор с емкостью 0,01 мкФ. Микрофарады могут обозначаться как мкФ, так и uF. А конденсатор С6 полярный и электролитический. На это указывает знак плюс возле УГО. Емкость С6 равна 470 мкФ. Номинальное рабочее напряжение указывается в вольтах. Здесь для С6 это 16 В.

Нанофарады обозначаются как nF.

Если на схеме нет приставки микрофарад (мкФ, uF), или нанофарад (нФ, nF) то емкость этого конденсатора измеряется в пикофарадах (пФ, pF). Такое условие не общепринятое, поэтому тщательно изучите схему, которую вы собираетесь читать или собирать. В фарадах (F) емкостей мало, поэтому используются мкФ, нФ и пФ.

Что такое даташит и для чего он нужен

Даташит (Datasheet) — это техническая спецификация, в которой указывается полная информация о радиодетали. Вся техническая информация, основная схема включения, параметры и типы корпусов указываются именно в этом документе.

Даташиты бывают на разных языках, в основном на английском. Есть и переведенные варианты.

Документация на микросхему NE555. Нарисован корпус и внешний вид детали.

Здесь подробно описывается микросхема, ее параметры и условия работы.

Такая документация есть на любую деталь. Это очень удобно и информативно, особенно при поиске аналогов. А помощью интернета поиск аналога деталей или схемы стал еще проще.

Еще даташит позволяет опознать неизвестную деталь или микросхему. Достаточно написать ее название в поисковике, добавить слово даташит, и в результатах поиска будет вся документация.

Как научиться читать принципиальные схемы

На самом деле есть только несколько способов. Это теория и практика. Если вы выучите обозначение радиодеталей, это еще не значит, что вы выучили схемотехнику. Это все равно, что выучить азбуку, но без грамматики и практики вы не выучите язык.

Теория — это схемотехника, книги, описание принципа работы схемы. Практика — это сборка устройств, ремонт и пайка.

Например простая схема усилителя на одном транзисторе.

Вход X1 плюс (левый или правый канал), X2 минус. Звуковой сигнал поступает на электролитический конденсатор C1. Он защищает транзистор VT1 от замыкания, поскольку транзистор VT1 постоянно открыт при помощи делителя напряжения на R1 и R2. Делитель напряжения устанавливает рабочую точку на базе транзистора VT1, и транзистор не искажает входной сигнал. Резистор R3 и конденсатор C2, которые подключены к эмиттеру транзистора VT1, выполняют функцию термостабилизации рабочей точки при повышении температуры транзистора. Электролитический конденсатор C3 накапливает и фильтрует питающее напряжение. Динамическая головка BF1 служит выходом звукового сигнала.

Можно ли это понять, только выучив обозначения радиодеталей без схемотехники и теории? Навряд-ли.

Еще сложнее дело обстоит с цифровой техникой.

Что это за микроконтроллер, какие он функции выполняет, какая прошивка и какие фьюзы в нем установлены? А вторая микросхема, какой это усилитель? Без даташитов и описания к схеме не получится понять ее работу.
Изучайте схемотехнику, теорию и практику. Просто выучив название деталей не получится разобраться в схемотехнике. Обозначение радиодеталей выучиться само по себе по мере практики и накопления знаний. Еще все зависит от выбранной отрасли. У связистов одна схемотехника, у ремонтников мобильной техники другая. А те, кто занимается звуком, не очень поймут электриков. Как и наоборот. Чтобы понять другую отрасль, ее схемотехнику и принципы работы нужно в нее погрузиться.

Принципиальные схемы это своего рода язык, у которого есть разные диалекты.

Поэтому, не следует строить иллюзии. Изучайте схемотехнику и собирайте схемы.

Принципиальные схемы помогают собирать устройства, и при изучении теории, понимать работу устройства. Без знаний и опыта, схема это просто схема.

Обозначения радиодеталей на принципиальных схемах

УГО — это условно графическое изображения радиодетали на схеме. Некоторые УГО различаются друг от друга.

Например, в США обозначение резисторов отличается от СНГ и Европы.

Из-за этого меняется восприятие схемы.

Однако внешне и по обозначениям они похожи. Или например, транзисторы. Где-то они чертятся с кругами, а где-то без. Могут различаться размеры и угол стрелок. В таблице представлены УГО отечественных радиодеталей.

Как научится читать электронные схемы

Для начинающих электронщиков важно понимать, как работают детали, как их рисуют на схеме и как разобраться в схеме электрической принципиальной. Для этого нужно сперва ознакомиться с принципом работы элементов, а как читать схемы электроники я расскажу в этой статье на примерах популярных устройств для начинающих.

Схема настольной лампы и фонарика на светодиоде

Схема – это рисунок на которых с помощью определенных символов изображаются детали схемы, линиями – их соединения. При этом, если линии пересекаются – то контакта между этими проводниками нет, а если в месте пересечения присутствует точка – это узел соединения нескольких проводников.

Кроме значков и линий на схеме изображены буквенные обозначения. Все обозначения стандартизированы, в каждой стране свои стандарты, например в России придерживаются стандарта ГОСТ 2.710-81.

Начнем изучение с простейшего – схемы настольной лампы.

Схемы не всегда читают слева направо и сверху вниз, лучше идти от источника питания. Что мы можем узнать из схемы, посмотрите в правую её часть.

– значит питание переменным током.

Рядом написано «220» – напряжением в 220 В. X1 и X2 – предполагается подключение в розетку с помощью вилки. SW1 – так изображается ключ, тумблер или кнопка в разомкнутом состоянии. L – условное изображение лампочки накаливания.

Краткие выводы:

На схеме изображено устройство, которое подключается к сети 220 В переменного тока с помощью вилки в розетку или других разъёмных соединений. Есть возможность отключения с помощью переключателя или кнопки. Нужно для питания лампы накаливания.

С первого взгляда кажется очевидным, но специалист должен уметь сделать такие выводы глядя на схему без пояснений, это умение даст возможность выносить диагноз неисправности и устранять её или же собирать устройства с нуля.

Перейдем к следующей схеме. Это фонарик с питанием от батарейки, в качестве излучателя в нём установлен светодиод.

Взгляните на схему, возможно, вы увидите новые для себя изображения. Справа изображен источник питания, так выглядит батарейка или аккумулятор, длинный вывод это плюс другое название – Катод, короткий – минус или Анод. У светодиода к аноду (треугольная часть обозначения) подключается плюс, а к катоду (на УГО выглядит как полоска) – минус.

Это нужно запомнить, что у источников питания и потребителей названия электродов наоборот. Две исходящие от светодиода стрелки дают вам понять, что этот прибор ИЗЛУЧАЕТ свет, если бы стрелки наоборот указывали на него – это был бы фотоприемник. Диоды имеют буквенное обозначение VDx, где х- порядковый номер.

Важно:

Нумерация деталей на схемах идет столбцами сверху вниз, слева направо.

Резистор – это сопротивление. Преобразует электрический ток в тепло, препятствую его движению, выглядит как прямоугольник, обычно на схемах имеет буквенное обозначение «R».

Как читать электронные схемы: увеличиваем уровень сложности

Когда вы уже разобрались с базовым набором элементов, пора ознакомится с более сложными схемами, давайте рассмотрим схему трансформаторного блока питания.

Главным средством преобразователя на схеме является трансформатор TV1, это новый для вас элемент. Предлагаю рассмотреть ряд подобных изделий.

Трансформаторы используются повсеместно, либо в сетевом (50 гц), либо в импульсном (десятки кГц) исполнении. Катушки индуктивности используются в генераторах, радиопередающих устройствах, фильтрах частот, сглаживающих и стабилизирующих приборах. Она выглядит следующим образом.

Второй незнакомый элемент на схеме – это конденсатор, здесь используется для сглаживания пульсаций выпрямленного напряжения. Вообще основная его функция – это накапливать энергию в качестве заряда на его обкладках. Изображается следующим образом.

Если к схеме добавить узел стабилизации, построенный по схеме параметрического стабилизатора, напряжение блока питания будет стабилизировано. При этом только от повышения питающего напряжения, при просадках ниже, чем Uстабилизации напряжение будет пульсирующем в такт с просадками. VD1 – это стабилитрон, они включаются в обратном смещении (катодом к точке с положительным потенциалом). Различаются по величине тока стабилизации (Iстаб) и напряжения стабилизации (Uстаб).

Краткие итоги:

Что мы можем понять из этой схемы? То, что блок питания состоит из трансформатора, выпрямителя и сглаживающего фильтра на конденсаторе. Подключается первичной стороной (входом) к сети переменного тока с напряжением 220 Вольт. На его выходе имеет два разъёмных соединения – «+» и «-» и напряжение 12 В, нестабилизорванное.

Давайте перейдем еще более сложным схемам и познакомимся с другими элементами электрических цепей.

Как читать схемы с транзисторами?

Транзисторы – это управляемые ключи, вы можете закрыть их и открыть, а если нужно открыть не полностью. Данные свойства позволяют их применять, как в ключевом, так и линейном режимах, что позволяет их использовать в огромном спектре схемных решений.

Давайте рассмотрим популярную среди новичков схему – симметричный мультивибратор. Это по сути генератор, который на своих выходах выдаёт симметричные импульсы. Может применяться, как основа для простых мигалок, в качестве источника частоты для пищалки, в качестве генератора для импульсного преобразователя и во многих других цепях.

Пройдемся по знакомым деталям сверху вниз. Вверху мы видим 4 резистора, средние два – времязадающие, а крайние – задают ток резистора, также влияют на характер выходных импульсов.

Далее HL – это светодиоды, а ниже два электролита – это полярные конденсаторы, когда будете их монтировать оставайтесь внимательны – неправильное подключение электролитического конденсатора чревато выходом его из строя вплоть до взрыва с выделением тепла.

Интересно:

На графическом обозначении электролитического конденсатора всегда помечается «положительная» обкладка конденсатора, а на настоящих элементах – чаще всего есть пометка отрицательной ножки, не перепутайте!

VT1-VT2 – это новые для вас элементы, таким образом обознаются биполярные транзисторы обратной проводимости (NPN), ниже указана модель транзистора – «КТ315». У них обычно 3 ножки:

При этом на корпусе их назначение не указывается. Чтобы определить назначение выводов, нужно воспользоваться одним из поисковых запросов:

1. «Название элемента» – цоколевка.

2. «Название элемента» – распиновка.

3. «Название элемента» datsheet.

Это справедливо, как для радиоламп, так и для современных микросхем. Запросы имеют почти одинаковый смысл. Вот таким образом я нашел цоколевку транзистора КТ315.

На изображении с распиновкой должно быть четко видно: с какой стороны считать ножки, где находится ключ, срез или метка, чтобы вы правильно определили необходимый вывод.

Интересно:

У биполярных транзисторов стрелка на эмиттере обозначается направление протекания тока (от плюса к минусу), если стрелка ОТ базы – это транзистор обратной проводимости (NPN), а если К базе то прямой проводимости (PNP), часто вы можете заменить все NPN транзисторы на PNP, как в схеме мультивибратора, тогда нужно будет и поменять полярность источника питания (плюс и минус местами) ведь, повторюсь, стрелка на эмиттере указывает направление протекания тока.

На приведенной схеме положительный контакт источника питания подключен к верхней части схемы, а отрицательный к нижней. Так и на транзисторе стрелка указывает сверх-вниз – по направлению протекания тока!

В элементах с большим количеством ног имеет значение куда подключать, так же, как и в диодах и светодиодах, если вы перепутаете ножки – в лучшем случае схема не заработает, а в худшем – убьете детали.

Что мы смогли узнать, прочитав схему мультивибратора:

В этой схеме используются транзисторы и электролитические конденсаторы, питается она напряжением в 9 В (хотя может и больше, и меньше, например 12 В не повредят схеме, как и 5 В).

Стало ясно о способе соединения деталей и включения транзисторов. А также о том, что схема представляет собой прибор, работающий на принципе автогенератора основанного на процессе перезаряда транзисторов, которое вызвано попеременным открытием и закрытием транзисторов каждого по очереди, когда первый открыт, второй закрыт.

Проследив пути протекания тока (от плюса к минусу) и использовав знания о том, как работает биполярный транзистор мы делаем выводы о характере работы.

Тиристоры – полууправляемые ключи, учимся читать схемы

Давайте рассмотрим схему с не менее важным и распространенным элементом – тиристором. Я выбрал слово «полууправляемый» потому что, в отличие от транзистора, вы можете только открыть его, ток в нем прервется либо при прерывании питания, либо при смене полярности приложенного к нему напряжения. Открывается с помощью подачи на управляющий электрод напряжения.

Симисторы – содержат два тиристора соединённых встречно-параллельно. Таким образом, одним компонентом можно коммутировать переменный ток, при прохождении верхней части (положительной) полуволны синусоиды, при условии наличия сигнала на управляющем, электроде откроется один из внутренних тиристоров. Когда полуволна сменит свой знак на отрицательный – он закроется и в работу вступит второй тиристор.

Динисторы – разновидность тиристора, без управляющего электрода, а открываются они, подобно стабилитронам, по преодолению определенного уровня напряжения. Часто используются в импульсных блоках питания, как пороговый элемент для запуска автогенераторов и в устройствах для регулировки напряжения.

Вот так, собственно это выглядит на схеме.

Внимательно смотрим на подключение. Схема предназначена для подключения к сети переменного тока, например 220 В, в разрыв одного из питающих проводов, например фазного (L). Симистор VS1 – основной силовой элемент цепи, справа внизу дана его распиновка из даташита, 3 вывод – управляющий. На него через двунаправленный динистор VD1 модели DB3 рассчитанный на напряжение включения порядка 30 вольт, подаётся управляющий сигнал.

Так как все полупроводниковые приборы в этой конкретной схеме двунаправленные, регулировка осуществляется по обеим полуволнам синусоиды. Динистор открывается, когда на конденсаторе C1 появляется необходимой величины потенциал (напряжение), а скорость его заряда, следовательно, момент открытия ключей, задаётся RC цепью, состоящей из R1, переменного резистора (потенциометра) R2 и С1.

Эта простая схем имеет огромное значение и прикладное применение.

Выводы

Благодаря умению читать схемы электрические принципиальные, вы можете определить:

1. Что делает это устройство, для чего оно предназначено.

2. При ремонте – номинал вышедшей из строя детали.

3. Чем питать это устройство, каким напряжением и родом тока.

4. Примерную мощность электронного устройства, исходя из номиналов компонентов силовых цепей.

Важно не только знать условные графические обозначения элементов, но и принцип их работы. Дело в том, то не всегда те или иные детали могут использоваться в привычной роли. Но в пределах сегодняшней статьи рассмотреть все распространенные элементы довольно сложно, так как это займет очень большой объем.

Как читать автомобильные электрические схемы

Выход из строя электронных компонентов современного автомобиля может приводить к его полному обездвиживанию. Хорошо, если это случилось у вашего дома или работы, но если такое случается на трассе или на природе – такая поломка может обойтись вам крайне дорого: как в плане денег, так и в плане потерянного времени и даже (надеюсь до такого не дойдет) здоровья!

Почему полезно разбираться в автоэлектрике

Даже если у вас не технический склад ума или ваш доход позволяет вам не задумываться о таких мирских мелочах – замена обычного сгоревшего предохранителя в долгом пути позволит вам значительно облегчить жизнь. Я уж не говорю о тех случаях, когда сервисмэны, не желая разбираться в проблеме вашего автомобиля, призывают вас менять все датчики подряд, тратя на эту “карусель” значительные суммы денег (что кстати иногда не гарантирует положительного результата). По-этому, я предлагаю вам не сдаваться раньше времени и попробовать самостоятельно диагностировать поломку вашего автомобиля, а для этого было бы неплохо иметь под рукой электрические схемы, и самое главное – уметь их читать и понимать.

Электросхемы? – разберется даже школьник!

Встретив впервые принципиальную электрическую схему автомобиля, я понял, что принципы ее построения и обозначение на ней элементов – стандартизированы, и те элементы, которые присутствуют во всех автомобилях – обозначаются одинаково, независимо от производителя автомобиля. Достаточно один раз разобраться, как читать такие электросхемы, и вы с легкостью сможете понимать, что на ней изображено, даже если вы впервые видите конкретную схему от конкретного автомобиля и даже ни разу не лазили к нему под капот.

Графические обозначения элементов схемы могут слегка отличаться, к тому же бывают черно-белые варианты исполнения и цветные. Но буквенное обозначение везде одинаково. Помимо принципиальных электрических схем полезно иметь схемы, на которых обозначено физическое расположение (в пространстве) на кузове различных жгутов, разъемов и точек заземления – это поможет вам быстро отыскать их. Итак, давайте взглянем на примеры таких схем, а потом приступим к описанию их элементов.

Пример принципиальной электрической схемы автомобиля


На принципиальной схеме не указано физическое взаимное расположение элементов, а лишь показано, как эти элементы связаны друг с другом. Важно понимать, что если два элемента на такой схеме изображены рядом друг с другом – на самом кузове они могут быть совершенно в разных местах.

Схематическое расположение электрических компонентов на кузове


Такая схема несет другой тип информации: трассировка кабельных кос и приблизительное расположение разъемов на кузове.

Трехмерная точная схема расположения электрических компонентов автомобиля

Встречаются и такие схемы, на которых уже точно показано, как и куда проходят кабельные трассы в кузове автомобиля, а также точки заземления.

Стандартные элементы принципиальной схемы автомобиля

Приступим же, наконец, к рассмотрению элементов схемы и научимся ее читать.

Стандартные цепи питания и соединение элементов

Цепи питания – элементы схемы передающие ток, изображаются линиями: в верхней части схемы изображены цепи с положительным потенциалом (“плюс” аккумулятора), а внизу – с нулевым, т.е. земля (или “минус” аккумулятора).

Цепь 30 – идет от плюсовой клеммы аккумулятора, 15 – от аккумулятора через замок зажигания – “Зажигание 1” Цепь под номером 31 – заземление

Некоторые провода также имеют цифровое обозначение в месте подключения к устройству, это цифровое обозначение позволяет не прослеживая цепь определить откуда он идет. Эти обозначение объединены в стандарте DIN 72552 (часто используемые значения):


Для удобства, соединения между элементами на цветных схемах изображены разными цветами, соответствующими цветам проводов, а на некоторых схемах также указывается сечение провода. На черно-белых схемах цвета соединений обозначаются буквами:

Иногда можно встретить пустую окружность в узле – это означает, что данное соединение зависит от комплектации автомобиля, линии при этом, как правило, подписаны.

Обозначение разъемов на электросхеме – коннекторы

Провода в автомобильной электропроводке соединяются несколькими способами, и один из них – разъемы (Connector). Обозначаются разъемы буквой “С” и порядковым номером. На рисунке слева вы видите схематическое изображение соединений участков провода через разъемы. Вообще, правильнее говорить не “пин №2”, а “терминал №2”, если встретите в схеме такое понятие, то теперь будете знать, что это порядковый номер соединения (контакта) в разъеме.

Ну а на этом рисунке видно, как нумеруются контакты в разъемах и как правильно их считать, чтобы узнать где какой пин. Контакты нумеруются со стороны “мамы” с верхнего угла слева на право построчно. Со стороны “папы”, соответственно, зеркально.

Кстати, на многих форумах автомобильные разъемы почему-то называют “фишками”, в гугле по поводу такой “этимологии” никакой информации нет. Если вы знаете или догадываетесь, откуда пошло такое название, пишите в комментариях, не стесняйтесь.

Соединение проводов в автомобиле – соединительные колодки (Splice)

Помимо разъемов (Connectors) провода в автомобиле соединяются при помощи пакета перемычек или соединительных колодок ( в электросхемах на английском – Splice). Обозначаются соединительные колодки, как вы видите на рисунке, буквой “S” и порядковым номером, например: S202, S301.

В некоторых электросхемах есть отдельное описание каждой колодки и расписано назначение проводов, подводимых к ней. Главная отличительная особенность колодки (Splice) от разъема (Connector) в том, что соединяется группа проводов: есть один входящий провод и группа исходящих потребителей, как правило, это шины питания.

Обозначение предохранителей на электросхемах

Еще один элемент электрической схемы, передающий энергию – предохранитель. Предохранители в автомобиле имеют два обозначения: Ef – предохранитель в моторном отсеке (engine fuse) и F (fuse) – предохранитель в салоне автомобиля. Как и во всех других случаях, после обозначения идет порядковый номер предохранителя и номинал тока ( в Амперах), на который он рассчитан. Все предохранители расположены рядом – в блоках предохранителей и реле.

Обозначение автомобильных реле: распиновка, контакты

Автомобильное реле имеет обычно 4 или 5 контактов, которые имеют стандартную нумерацию (но бывают и случаи, когда нумерация не совпадает). Два контакта при этом являются управляющими: 85 и 86, а остальные коммутируют контакты, по которым проходят значительные токи. Реле, как и предохранители, располагаются, в основном, в блоках под капотом и в салоне, но бывают случаи навесного монтажа реле в любом непредсказуемом месте, особенно при самостоятельной установке кем-либо.

Условные обозначения автомобильных датчиков на схемах

  1. Датчик холостого хода (ДХХ)
  2. Электронный блок управления (ЭБУ) двигателем
  3. Датчик температуры охлаждающей жидкости
  4. Датчик положения дроссельной заслонки (ДПДЗ)
  5. Датчик абсолютного давления воздуха во впускном коллекторе (ДАД)
  6. Датчик давления в системе кондиционирования
  7. Датчик температуры воздуха во впускном коллекторе

На схеме выше представлены далеко не все датчики, которые могут быть в автомобиле. Условное обозначение датчиков также может отличаться, но все они обычно подписаны, как и все другие элементы, преобразующие энергию в электрической сети автомобиля.

Условные обозначение сложных элементов на автомобильных схемах – примеры схем

Теперь рассмотрим, как на электрической схеме обозначены более сложные и не стандартные элементы, такие как: стартер, катушка зажигания и другие и приведем несколько примеров схем, на которых они изображены. В различных схемах изображение таких элементов может меняться, но элементы всегда подписаны и интуитивно понятно нарисованы, по-этому, ниже будут приведены только некоторые из них, иначе эта статья растянется надолго.

  1. Аккумуляторная батарея (АКБ)
  2. Замок зажинагия
  3. Комбинация приборов
  4. Выключатель
  5. Стартер
  6. Генератор

Если вы помните школьный курс физики, то найдете на схеме, представленной выше, уже знакомые обозначения, например: электромотор, диод, ключ, элемент питания, лампа накаливания. Эти, знакомые почти каждому, условные обозначения помогают понять смысл и назначение приборов в бортсети автомобиля, преобразующих электроэнергию.

  1. Катушка зажигания
  2. Электронный блок управления двигателем (ЭБУ)
  3. Датчик положения коленчатого вала

На этой схеме уже появляется такой более сложный элемент схемы как – блок управления или контроллер. Каждый элемент сети автомобиля, имеющий микросхемы или транзисторные ключи в своем составе, помечается значком с изображением транзистора. Обращаю ваше внимание на то, что в данном примере выше, изображены далеко не все выводы ЭБУ – только те, которые нужны именно на этой схеме. На схемах ниже вы так же встретите изображение ЭБУ.

  1. Блок управления двигателем (ЭБУ)
  2. Октан-корректор
  3. Электромотор (в данном случае – бензонасос)
  4. Датчик концентрации кислорода

На этой схеме еще раз изображен ЭБУ, но уже с другими выводами, кстати, по нарисованным ключам на ЭБУ можно понять, какую функцию в данном случае выполняет контроллер: замыкает данные линии на землю, то есть запитывает элементы, подключенные к этим проводам и плюсовой клемме АКБ.

  1. Электромагнитный клапан рециркуляции отработавших газов
  2. Двухходовой клапан
  3. Гравитационный клапан
  4. Комбинация приборов
  5. Электронный блок управления двигателем
  6. Датчик скорости

На данном примере схемы мы встречаемся с изображением клапанов, прошу обратить внимание, что у двухходового клапана контакты пронумерованы, в отличие от остальных. На изображении датчика скорости изображен транзистор, значит в элементе присутствует полупроводниковый элемент.

  1. Переключатель наружного освещения
  2. Переключатель указателей поворота
  3. Переключатель корректора фар
  4. Корректор левой фары
  5. Левая фара автомобиля
  6. Корректор правой фары
  7. Правая фара автомобиля

На данной схеме изображены элементы управления освещением автомобиля. У таких сложных переключателей как замок зажигания или переключатель наружного освещения имеется набор контактов, между которыми в различных положениях переключателя коммутируется ток. На схеме прекрасно видно, в каком режиме переключателя какие контакты соединяются.

Автоэлектрика? Проще простого!

Итак, мы рассмотрели с вами самые распространенные элементы электрических схем автомобилей, посмотрели как они изображаются на схемах и какие ключевые особенности при этом присутствуют. Искренне надеюсь, что эта статья научила вас чему-нибудь или даже выручила вас в сложной ситуации с поломкой автомобиля. Если у вас появились вопросы, было бы здорово, если вы их напишете в комментариях под этой статьей. Всем огромной удачи на дорогах и увидимся в следующих статьях об автоэлектрике!

Как Читать Принципиальные Электрические Схемы

Треугольник обозначает анод, а линия — катод; лампу накаливания и другие осветительные элементы обычно обозначают Понимание данных значков и обозначений делает чтение электрических схем простым.


Также связанные реле и контакт могут иметь одинаковое буквенное обозначение. Радиоэлементы в основном нумеруются слева-направо и сверху-вниз.

Катушка электромагнитного реле. Это резистор с мощностью рассеивания 0,25Вт и номиналом 10кОм на схеме 10К.
Как работать с проектом электроосвещения

Определить аппараты защиты электросистемы плавкие предохранители, автоматический выключатели и т.

Если бы между ними было соединение, то мы бы увидели вот такую картину: Давайте еще раз рассмотрим нашу схему. Помимо ключевых обозначений, на схемах указываются линии передачи электроэнергии.

Принципиальные электрические схемы составляют на основании схем автоматизации, исходя из заданных алгоритмов функционирования отдельных узлов контроля, сигнализации, автоматического регулирования и управления и общих технических требований, предъявляемых к автоматизируемому объекту. Разобравшись с отдельными фрагментами и связями между ними, складывается полная картина работы всей схемы.

Для повышения информационной насыщенности печатного издания в научной и технической литературе по радиоэлектронике, а также на различных схемах, относящихся к этой области знаний, применяются условные буквенные сокращения устройств и протекающих в них физических процессов. На принципиальных электрических схемах в условном виде изображают приборы, аппараты, линии связи между отдельными элементами, блоками и модулями этих устройств.

Релейная часть выглядит несколько сложнее, но если рассматривать её по частям и так же, двигаясь последовательно, шаг за шагом, то нетрудно понять логику её работы.

Однолинейная схема электроснабжения предприятия. Часть 2.

Порядок чтения электросхемы

Найти на схеме источники питания, определить род тока. От балды я нарисовал схемку.

Принципиальные электрические схемы служат для изучения принципа действия системы автоматизации, они необходимы при производстве пуско-наладочных работ и в эксплуатации электрооборудования.

Всего 8 штук.

С их значениями также рекомендуется ознакомиться перед началом работы со схемами.

На электрической схеме каждому элементу и соединению соответствует значок или обозначение.

Ещё один пример.

Пожалуй, это самый часто задаваемый вопрос в рунете. Таблица 1.
Учимся читать электрические схемы на примере простого терморегулятора.

Обозначение линий связи на электрических схемах

Сигнальные устройства На электрических схемах достаточно часто обозначаются сигнальные устройства — лампы, светодиоды. Всего 8 штук.

После отрабатывания релейной части, включается катушка контактора 2-КМ. Элементы управления Реле применяется во многих электрических приводах. В этом месте может быть пересечение дорожек или спайка из проводков.

В обозначениях зашифрована информация, позволяющая выяснить структуру элементов и их особые характеристики. Но и это еще не все.

Но электроприемников в схеме много и далеко не безразлично, с какого из них начинать чтение схемы — это определяется поставленной задачей. Для примера дадим несколько самых простых элементов, которые в графическом исполнении очень похожи на оригинал. Знание графических обозначений, как алфавит для чтения книг, является основным условием чтения схем. И, наконец, ошибка, допущенная в принципиальной схеме, неизбежно будет повторяться во всех последующих документах.

Поэтому и на схеме они обозначаются по-разному: Транзистор Как видите, транзистор по своему изображению на него-то и не похож. Другие источники питания показаны на следующей картинке. Что обозначают буквы и цифры Все цифры и буквы на схемах являются дополнительной информацией, это опять-таки к вопросу, как правильно читать электросхемы? То есть в цепях, где «гуляет» большое напряжение и большая сила тока R — резисторы S — коммутационные устройства в цепях управления, сигнализации и в цепях измерения T — трансформаторы и автотрансформаторы U — преобразователи электрических величин в электрические, устройства связи V — полупроводниковые приборы W — линии и элементы сверхвысокой частоты, антенны X — контактные соединения Y — механические устройства с электромагнитным приводом Z — оконечные устройства, фильтры, ограничители.

Обозначения в схемах


Начинать ознакомление со схемами можно с небольших приборов, таких как конденсаторы, динамики, резисторы. Это и проще, и удобнее. Что обозначают буквы и цифры Все цифры и буквы на схемах являются дополнительной информацией, это опять-таки к вопросу, как правильно читать электросхемы?

Вот взгляните на его обозначение. Последующие электроприемники выявятся сами собой. Что это значит?

Знание принципов чтения электросхем необходимо, чтобы понимать взаимодействие элементов и функционирования приборов. Силовая схема от источника читается так: При включении автомата 2-QF, сетевое напряжение подключается к разомкнутым контактам контактора 2-КМ. На схемах это отображается вот таким образом. Схема кроссовера фильтра для акустической колонки. Читайте также:.
Читаем принципиальные электрические схемы

Что такое электрическая схема

Знание графических обозначений, как алфавит для чтения книг, является основным условием чтения схем. А вот так обозначается динамик: Динамик То же большое сходство.

Ее функция — управление 40 Ваттной лампой с помощью 5 Вольт.

Здесь у нас схема блока питания, на который мы подаем Вольт из розетки вашего дома, а выходит уже с нашего блока постоянное напряжение. Принципы чтения схем важны для тех, кто занимается электромонтажом, ремонтом бытовой техники, подключением электрических устройств. Теперь, зная графический редактор, можно на экране компьютера нарисовать радиоэлектронную схему, а затем ее распечатать на принтере.

Заземление на корпус. Изображают эти устройства следующих образом: Измерительные приборы Наиболее часто на электрических схемах встречаются обозначения амперметра, вольтметра, или обобщенное обозначение измерительного прибора.

Это делает радиосхемы понятными для радиоспециалистов во всем мире. И, наконец, ошибка, допущенная в принципиальной схеме, неизбежно будет повторяться во всех последующих документах.

Как вы видите, схема состоит из каких-то непонятных значков. Теперь цифровое обозначение. К примеру, конденсатор на рисунке снизу. Обычно на современных схемах это обозначают так: Чтоб уж совсем наглядно показать этот момент. Ложные цепи иногда образуются не только при непредвиденном соединении, но и при незамыкании, контакта, перегорании одного предохранителя, в то время как остальные остались исправными.

Как читать электрические схемы – графические, буквенные и цифровые обозначения

Также в электронных устройствах могут быть механически связанные элементы. Так в биполярных транзисторах предусмотрены как минимум три вывода базовый, коллектор и эмиттер , что требует большего количества условных обозначений. Сюда могут относиться различные микрофоны, пьезоэлементы, динамики и тд. И еще несколько обозначений. Принципиальные электрические схемы составляют на основании схем автоматизации, исходя из заданных алгоритмов функционирования отдельных узлов контроля, сигнализации, автоматического регулирования и управления и общих технических требований, предъявляемых к автоматизируемому объекту.

Поэтому применяются сдвоенные переменные резисторы, где два переменных резистора имеют один регулирующий вал. Виды электрических схем Все электрические схемы представлены в виде изображения или чертежа, где наряду с оборудованием указаны звенья электроцепи.
Монтажные схемы и маркировка электрических цепей

Для начинающих как читать электрические схемы: учимся правильно разбираться

  1. Понятие электрической схемы
  2. Разновидности электросхем
  3. Основные обозначения
  4. Источников питания
  5. Проводов и их соединений
  6. Общего провода
  7. Радиодеталей
  8. Резисторы
  9. Конденсаторы
  10. Диоды
  11. Как научиться читать
  12. Как читать простые схемы
  13. Правила чтения
  14. Как правильно составлять схему

Умение того, как читать электрические схемы, необходимо каждому радиолюбителю независимо от квалификации. Это поможет избежать ошибок при конструировании.

Понятие электрической схемы

Электрическая схема — это совокупность графических элементов, описывающая порядок их соединения и взаимодействия.

Разновидности электросхем

На практике применяется несколько видов электрических схем:

  • простые;
  • монтажные;
  • однолинейные;
  • многолинейные.

Первый тип самый распространенный. Основные компоненты и порядок их присоединения друг ко другу указываются на простых схемах (ПС). Кроме того, по ним проверяется правильность сборки. На монтажных (МС) диаграммах показано расположение деталей на плате или внутри корпуса. Полилинейные схемы используют для изображения трехфазных цепей.

Основные обозначения

Для удобства понимания детали источники питания провода и их соединения имеют графические обозначения. Буквенные символы распространенных радиодеталей приведены в таблице:

Деталь Обозначение
Резистор R
Конденсатор C
Катушка индуктивности L
Полупроводник V
Предохранитель F
Элемент питания G

Источников питания

Для обозначения простого источника питания применяется символ, состоящий из 2 разделенных промежутком линий. Тонкая длинная характеризует положительный полюс, а короткая толстая — отрицательный. Кроме того, рядом с линиями ставится обозначение полюсов. Если нужно изобразить батарею, состоящую из нескольких гальванических элементов, то 2 символа для источника питания соединяются короткой пунктирной линией.

Проводов и их соединений

Проводники обозначаются тонкими горизонтальными или вертикальными линиями. Допускается отклонение на прямой или тупой угол. Если провода пересекаются, то место соединения выделяется точкой.

Для более легкого прочтения такие обозначения могут окрашиваться. Кабели символизируются линиями большей толщины.

Общего провода

Чтобы упростить начертание и чтение ПС, употребляется обозначение общего провода. Оно представляет собой перевернутую букву «Т». Ее вертикальная перекладина соединена со всеми проводами, которые подсоединены в точку с отрицательным потенциалом.

Радиодеталей

Для каждой радиодетали предусмотрено свое обозначение, утвержденное ГОСТом или другими стандартами. Благодаря этому достигается единообразие оформления.

Резисторы

Мощность сопротивлений обозначается в соответствии с таблицей:

Символ Мощность
2 косые черты 0,125 Вт
1 косая черта 0,25 Вт
Длинная горизонтальная черта 0,5 Вт
1 вертикальная черта 1 Вт
2 вертикальные черты 2 Вт
Римская цифра «5» 5 Вт

Символ резистора — сплошной прямоугольник.

Конденсаторы

Эти элементы обозначаются как 2 параллельные короткие линии, к которым подводятся проводники. Если емкость регулируется, то указанный символ перечеркивается по диагонали стрелкой. Подстроечные конденсаторы отличаются тем, что их обозначение пересекается молоточком, а также указываются номиналы.

Диоды

Символ этой детали — равносторонний треугольник, пересеченный подведенным к нему проводником. Одна из его вершин, к которой добавлена короткая риска, обозначает анод. Соответственно, сторона треугольника, пересеченная проводом, — это катод. В зависимости от разновидности полупроводника, символ дополняется вспомогательными метками.

Например, светодиод отличается 2 параллельными стрелками, идущими под углом 135°.

Как научиться читать

Чтобы научиться читать электрические схемы, следует вначале изучить основные законы электротехники и правила соединения деталей. Их знание поможет добиваться нужных результатов при сборке действующих устройств и их работоспособности. Когда законы будут изучены, разбираются со стандартами по условному обозначению деталей и способами их подключения. Затем обращают внимание на тип элементов и их номиналы.

Как читать простые схемы

Процесс чтения для «чайников» рассматривается на примере простого проекта, состоящего из источника питания, звонка, нефиксируемой кнопки и проводников. Схема представляет собой замкнутую цепь с компонентами, соединенными последовательно. Это означает, что сила протекающего по ней тока будет одинакова в любой точке.

При подаче напряжения по нажатию кнопки звонок начинает звонить. Это связано с тем, что ток идет от положительного полюса батареи к отрицательному через все компоненты. Если провода не оказывают сопротивление постоянному току, то напряжение на клеммах звонка и выводах источника питания будет одинаковым по второму закону Кирхгофа.

Правила чтения

Соблюдение рекомендаций по чтению ПС поможет разбираться с принципом работы устройств. Существует несколько правил изучения схем:

  1. Вначале надо ознакомиться с общим расположением деталей на ПС, примечаниями и пояснениями.
  2. Правильно определить систему питания. Для этого следует искать общие провода, выявлять наличие оксидных конденсаторов, полярность их подключения, а также структуру транзисторов. В цепях переменного тока надо обязательно установить фазировку.
  3. Потенциал в выбранной точке замеряется относительно отрицательного полюса, если в примечании не указано иное.

Кроме того, имеются дополнительные правила чтения, характерные для высоковольтных и магистральных цепей, схем автоматики и вычислительной техники.

Как правильно составлять схему

Электросхему для начинающих следует рисовать на клетчатом листе, чтобы ровно вычерчивать все линии и символы. Чаще всего общий провод соединен с отрицательным полюсом источника постоянного тока. Линейные элементы рисуются слева направо. Не рекомендуется изображать более 3 параллельных проводников подряд, это затруднит чтение схемы.

Для составления ПС, МС и чертежей можно воспользоваться приложениями для компьютера. Одно из них — Microsoft Visio — входит в состав офисного пакета. В наборе функций этой программы доступно более 100 символов для деталей, проводников и механизмов. Поддерживается автоматическая привязка концов рисуемых элементов, что обеспечивает целостность диаграммы при редактировании.

Еще одно приложение для правильного составления схем — это отечественный sPlan. Программа распространяется бесплатно и имеет русифицированные интерфейс и справку. С помощью sPlan создают электросхемы, соответствующие ГОСТу. Кроме того, имеется встроенный графический редактор, позволяющий создать монтажную диаграмму.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: